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Abstract

Studies have found that most novice programmers have low proficiency in

writing code. However, it is unclear what subskills compose code writing

and which subskills novice programmers struggle with. This study utilizes

programming traces to identify latent subskills that constitute code

writing so that teachers can offer specific instruction on the weak

subskills. Data were collected from an undergraduate course teaching

introductory computer science in Java. Six hundred and fourteen students

made submissions to homework programming questions in a web‐based
learning system. Based on the submission traces, we computed 11 features

related to correctness and time students spent on their submissions.

We conducted an exploratory factor analysis on two‐thirds of students

selected randomly and identified four factors. The first factor, code style

proficiency, was mainly related to code style errors. The second, syntactic

proficiency, concerned compiler errors. The third is semantic proficiency,

which concerns runtime and logic errors. The fourth, syntactic debugging

proficiency, concerned the success rate and time required for fixing

compiler and code style errors. A confirmatory factor analysis conducted

on the remaining one‐third of the data supported the four‐factor structure.
The factor model showed measurement invariance between the data set

where the model was developed and two new datasets, one from the same

sample but collected at a different time point and another from a different

sample and context (onsite course vs. online course). The factors were

related to prior programming abilities, programming language familiarity,

and future exam performance. These associations provided validity

evidence for the factor model.
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1 | INTRODUCTION

An early multinational study (conducted in 2001)
found that most undergraduates in introductory
computer science (CS1) courses did not know how to
program by the end of the course [41] and raised
concerns about the students' code‐writing skills. While
a subsequent repeat study (conducted in 2013) found
that students' performance at the end of a CS1 course
matched teachers' expectations better than in the 2001
study, the reason might be that teachers lowered their
expectations [62]. Even in this 2013 study, many
students still had difficulty in programming tasks by
the end of their first CS1 course. Many studies have
investigated explanations for this incapacity and found
that students were weak at the prerequisites of
code writing, such as code tracing and reading
[37, 39, 42, 63]. Correspondingly, researchers have
proposed instructions, particularly on the prerequi-
sites and the writing skill itself [43, 71]. However,
investigations on what skills novice programmers'
code writing consists of are still scarce. Such effort is
valuable because it enhances our understanding of the
code‐writing process of novice programmers, which in
turn could lead to the design of more targeted
instruction to address weaknesses in specific skills.

Programming traces contain detailed programming
problem‐solving information, such as edits on the
submitted code, errors generated by the submitted code,
and timestamp of submissions. That is, they capture the
process through which students develop the final
solution [64]. Thus, programming trace analysis can
contribute to the understanding of programming behav-
iors and learning and has attracted increasing interest
[7, 9, 30, 64, 65]. Nevertheless, there is limited work on
linking programming trace analysis and novices' code‐
writing skills. This study aims to address this gap.

Specifically, this study asks the question: how can
programming traces bring insights into the dimensions of
novices' code writing? To answer this question, we
extracted features related to code‐writing from under-
graduates' programming trace data in a CS1 course and
conducted factor analyses to discover the underlying
factors accounting for these features. We regarded these
factors as code‐writing skills and linked them with
existing frameworks of programming skills. We further
examined the relationships between these factors and
students' prior experiences as well as exam performance
to check the validity of the factors. Overall, this study
investigated four research questions:

• Research question 1: What latent factor model can we
identify underlying the features?

• Research question 2: What code‐writing skills do the
factors represent?

• Research question 3: Do the factors relate to exam
performance?

• Research question 4: Do students' prior experiences
relate to the factors?

2 | LITERATURE REVIEW

2.1 | Novice programming skills

Successfully completing programming activities requires
both declarative knowledge and procedural skills [71].
Declarative knowledge in programming may include a
basic understanding of programming constructs [60] and
programming language syntax [20, 56]. Procedural skills
enable individuals to apply their declarative knowledge to
solve problems [19]. Studies have identified three distinct
but related skills in novice programmers: code tracing,
explaining (or reading), and writing [16, 37, 41–43, 51].
Tracing is the skill of manually compiling and executing a
program and forecasting state changes and outputs
[15, 43]. Explaining refers to the ability to explain the
function or purpose of a program in plain language [42].
Writing is the ability to generate a program to perform a
task [51]. Earlier work has suggested that there is a
hierarchy among these procedural skills [39, 59]. For
instance, the tracing skill is necessary for reading code
correctly [17], and both tracing and explaining skills are
strong predictors of performance on code writing tasks
[39, 42, 63]. However, a recent study argued against this
hierarchy and that existent evidence could only support
that these procedural skills are related [24].

Many studies have focused on supporting novice
programmers' learning of code‐writing skills, but it is
unclear what constitutes code writing [18]. Can it be
decomposed into subskills, and what are they? Xie et al.
[71] proposed a framework that decomposes reading
and writing across the dimensions of semantics and
template. Writing semantics is the skill of translating an
unambiguous description to code, while writing a
template is the skill of identifying the objective of an
ambiguous problem description and creating a plan that
uses a template (reusable abstraction of programming
knowledge) to solve the problem. However, the frame-
work was developed from the perspective of instruction
and may not align with the structure of code writing
produced by novice programmers.

Researchers have used Bloom's taxonomy [10] and
the Structure of Observed Learning Outcomes (SOLO)
taxonomy [8] to understand programming proficiencies
[34, 61, 71]. The current study focuses on the SOLO
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taxonomy because it has been widely used for evaluating
the responses to problems requiring different program-
ming skills [16, 38, 68]. The SOLO taxonomy typically
classifies responses to a programming problem into four
sequential levels [71]: (1) prestructural responses lack
understanding of the problem or show knowledge
unrelated to the problem; (2) unistructural responses
provide a description for a small part of the code;
(3) multistructural responses provide a line by line
description of most of the code; (4) relational responses
summarize the code in terms of its purpose. A general
agreement is that solving an unfamiliar problem requires
relational responses, but there is disagreement on
responses for more specific problems [34]. One primary
reason may be that the level of responses to a problem
relies on students' prior knowledge and abilities [45].
The more advanced prior knowledge and abilities are,
the lower levels the response may be. Another possible
reason is that the responses to problems for the same
skill may fall into different levels if the exact subskills of
these problems differ. For example, writing semantics is
at the unistructural or multistructural level, but writing
template falls into the relational level [71].

2.2 | Programming trace analysis

2.2.1 | Understanding and supporting
learning

Programming traces can provide fine‐grained informa-
tion about how problem‐solving and learning processes
unfold [7, 9, 12] and help build personalized and adaptive
programming learning environments [50]. For example,
Berland et al. [7] presented high school students with a
task that required them to program virtual robots to play
soccer. The programming environment logged each of
the students' changes to their programs. Based on the
programming traces, they investigated how students'
program states evolved over time. The results showed
that, on average, program states experienced three
phases: exploration, tinkering, and refinement. Through-
out these phases, the quality of programs gradually
increased. Overall, Berland's study revealed how pro-
gramming trace analysis could inform us about novice
programmers' progress toward the final solution and the
role of tinkering in their learning.

Similarly, Blikstein et al. [9] analyzed students'
assignment submission traces in a programming
methodology course. They found that across assign-
ments, the average size and distribution of code
updates (the number of lines added, deleted, and
modified) were weakly related to course performance.

However, the change in the code update patterns of
two assignments strongly predicted course perform-
ance. The researchers further honed in on the first
assignment and found three meaningful programming
pathways, which had better power in predicting
midterm grades than students' scores on the first
assignment.

2.2.2 | Exploring programming behaviors
and predicting course performance

Researchers have used programming traces to explore
programming behaviors and predict future course
performance. Two well‐known metrics based on pro-
gramming traces are the error quotient (EQ) [32] and the
Watwin Score [66]. EQ characterizes the extent to which
a student struggles with syntax errors while solving a
programming problem [32]. It is computed via four steps:
(1) generate pairs of consecutive compilation events on a
problem; (2) assign a score to each pair based on an
algorithm; (3) divide the score by 11, which is the
maximum possible value (the maximum value is nine in
a more complex version) [31]; (4) compute the average of
the normalized scores of all pairs. The algorithm in step
two penalizes the student if they repeat the same errors
consecutively. A pair of compilation events gets a score
of zero if at least one event does not end with any error,
8 if the two events have different types of errors, and 11 if
both events have the same error type. Thus, a student
with a high EQ struggles with the problem more than a
student with a low EQ. Jadud [32] and Tabanao et al. [57]
have found that EQ explained a substantial proportion of
exam score variances (25%–29%).

The Watwin score is an extension of the EQ [66]. It
can be calculated by the beforementioned procedure with
a different algorithm in step two. This algorithm
penalizes students based on the amount of time between
compilation events, in addition to consecutive compiler
errors. Watwin score has been found to have predictive
power on course grades higher than EQ [66, 67].

Both EQ and the Watwin score focus on students'
compilation behaviors and do not consider how students
handle the semantic errors of a program [13]. The
Normalized Programing State Model (NPSM) addresses
this limitation by modeling students' programming
activities in terms of changes in both syntactic and
semantic correctness [13]. It divides students' program
states into 11 categories based on syntactic and semantic
correctness. For example, a program with unknown
semantic correctness might be in a state that was edited
to be syntactically correct by the student. This state might
switch to a state of execution outside or inside the debug
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mode. The results showed that NPSM had a better
predictive power on assignment scores and final course
grades than EQ and the Watwin score. For a detailed
overview of these and other related metrics, see
Villamor [64].

From among these different approaches, this study is
closer to NPSM because it considers both syntactic and
semantic correctness. It differentiates from NPSM, as
well as EQ and the Watwin score, by focusing on the
underlying structure among metrics that characterize
programming trajectories rather than on finding metrics
that have the best predictive power on grades. Our
assumption is that these metrics are the manifestation of
students' programming proficiencies. Factors that
account for the covariances among these metrics may
represent programming proficiencies, and different
factors represent different subskills. It is critical to
disentangle various subskills and identify those where a
student is weakest. Such understanding can help to build
better learner models and provides insights for personal-
ized intervention. This effort, together with developing
accurate prediction models, may move us toward closing
the loop of learning analytics [70].

2.2.3 | Programming trace features

Programming trace analysis generally utilizes three types
of features. The first type of feature aims to capture the
characteristics of individual computer programs. Exam-
ples are the number of variables, loops, uncommented
lines of code [58], the cyclomatic or McCabe complexity,
and the programming constructs used by a program [27].
The second category quantifies the change, similarity, or
dissimilarity between two programs. Examples are the
number of added, deleted, and modified lines [9], the bag
of word differences [9], and the edit distance between the
abstract syntax trees (AST) of the two programs [50].
The third category provides aggregated information
about the programming process. Examples are the
number of submissions [46], the time on the task [46],
and the total number of compiler errors made on a
problem [5]. This category also includes such metrics as
EQ [32] and NPSM [13]. This study mainly uses the
second and third types and aggregates them over
problems because the analysis was done at the student
level.

It is noteworthy that many programming trace
features may be related to the code writing skill, but
some are not suitable for revealing the dimensions of this
skill. Some features, especially those designed to capture
characteristics of individual computer programs, are
not applicable to all problems. For instance, some

programming tasks do not involve loops, and the number
of loops is not appropriate in these tasks. Similarly,
cyclomatic complexity is not useful in programming
tasks without complex control flow. Some features are
too coarse to bring insights into the dimensions of code
writing, for example, the number of submissions and the
total time on a task. This study identified 12 features that
might be proper for investigating the dimensions of code
writing. We detailed the features in Section 3.3.

3 | METHODS

3.1 | Participants

Participants were undergraduates in a CS1 course at a
public university in the United States during the Fall 2019
semesters. This study only included those who completed
the course, finished more than half of the homework
problems, and approved the use of their data for research
purposes. In total, 612 students were included, among
which 30.08% were female, and 81.36% were freshmen. A
total of 16.53% of students majored in CS, 27.39% were in
a program that combined CS and another discipline (e.g.,
CS and mathematics), and the others were in a program
unrelated to CS. Participants completed a survey about
their CS experiences before the course started.

3.2 | The course, learning system,
and data

The course taught basic computing concepts and
techniques in Java over a period of 16 weeks. Course-
work included 69 homework problems, 12 weekly
quizzes, and 3 exams. All coursework was required
and counted toward the course grade. One of the 69
homework problems was released every weekday on
most days of the semester. Each problem presented a
programming task that required students to write code
to solve and was estimated to take 10–15 min to
complete. Topics taught included: (before exam one)
variables, conditionals, loops, arrays, functions, and
strings; (between exams one and two) objects, polymor-
phism, references, and interfaces, (before exam three)
algorithm analysis, lists, trees, recursion, sorting, inter-
net, exceptions, and hashing after exam two.

The coursework was hosted on a web‐based,
problem‐driven learning system. Students used the
system to submit solutions to homework problems,
quizzes, and exams. Students could submit solutions to
homework problems as many times as they wanted
until the deadline. The system automatically graded a
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submission based on a set of tests and generated
feedback about mistakes. First, the learning system
checked whether the style of the submitted code met
the course requirement and whether the code could be
compiled. Code that did not match the required style
had check style errors (e.g., an operator was not
surrounded by whitespace, the submission had
incorrect indentation, etc.), and code that could not
be compiled had compiler errors. If the submitted code
had check style or compiler errors, the system
delivered a message containing the errors and corre-
sponding lines of code where the errors occurred.

If there were neither check style nor compiler errors,
the system compiled the solution and ran problem‐
specific tests to check whether the code fulfilled the
problem's requirements. For example, if the problem
asked students to write a program to compute the mean
of three numbers, the test could randomly generate three
numbers, use the generated numbers as input for the
code, and examine the equality between the mean and
the output of the code. This step might repeat multiple
times to avoid coincident equality between the mean and
the output. If the code fulfilled the requirements, it was
correct, and students obtained full credits for this
problem. Otherwise, the code contained test errors, and
the system would display a message related to the first
encountered test error.

Test errors were a mix of runtime errors (the system
could compile but not run the solution) and logic errors
(the system could run the solution, but the solution did
not generate the expected output) [28, 40]. This study did
not distinguish runtime and logic errors because, from
the students' perspective, the presentation of the error
feedback looked the same. Unlike check style and
compiler error feedback, runtime and logic error
messages could not indicate the error line because they

were rarely caused by a specific line of code. In addition,
prior studies have investigated runtime and logic errors
together [3, 13, 22], possibly because they are more
general than check style and compiler errors and
relatively independent of language [44].

The learning system automatically recorded the
information of each submission, including the code,
date, correctness, and error feedback. These submis-
sion traces were stored in a secure database outside the
learning system. This study only utilized submission
traces on homework programming problems because
these problems were closer to real‐world programming
tasks, where individuals can manage progress at their
own pace and use any necessary resources [36]. Since
students' code‐writing skills were expected to develop
during the course, it was decided that aggregating
homework submissions over the complete duration of
the course would be unreasonable. Thus, we split the
homework submissions into three datasets: before
exam one, between exams one and two, and after
exam two. Section 3.5 described the detail of how we
used these datasets. Table 1 presents the characteristics
of each data set.

3.3 | Code writing‐related features

We utilized the homework submission traces to compute
features related to code writing for factor analyses. The
error feedback generated by the learning system provided
rich information about errors in each submission.
We used this error feedback to extract the number and
type of errors in each submission. We further compared
consecutive submissions on the same problem to
compute features that measured changes in errors, such
as the number of syntax errors present in one submission

TABLE 1 The characteristics of submission trace datasets.

Data set Before exam one Between exams one and two After exam two

# problems 22 23 24

# submissions 81,070 94,863 105,219

% submissions with at least one checkstyle error 28.10 16.19 16.16

% submissions with at least one syntax errors 39.00 51.42 37.70

% submissions with at least one test errors 24.08 27.18 42.32

Average # submissions per problem per student 5.15 7.28 8.36

Average # checkstyle errors per problem per student 1.59 0.95 1.33

Average # syntax errors per problem per student 2.98 5.68 5.59

Average # test errors per problem per student 0.48 0.63 0.97

Note: #, number of; %, the proportion of.
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that were not present in the next consecutive submission.
These features were then aggregated across submissions
on the same problem. We computed 12 problem‐level
features, described below.

(1–3) The number of each type of error: the total
number of checkstyle errors, compiler errors, and
test errors students made in a problem. The number
of errors has previously been used as a negative
indicator of learning and proficiency [5, 6, 71].

(4–6) The time required for fixing each type of error:
The time required for fixing check style errors is the
average of the time between the submission where a
check style error appeared and the submission
where the error was fixed. The same operationaliza-
tion applied to the time for fixing syntax errors and
for fixing test errors. The time spent fixing errors
may reflect the extent to which students struggled
with those errors [66]. A student might solve an
error with multiple submissions across sessions,
and the sum of the time across sessions was used as
the time for fixing a single error.

(7–9) The failure rate for fixing each type of error:
Studies have considered consecutive submissions
with the same errors as an important indicator of
struggling [32, 66]. The failure rate for fixing check
style errors was calculated as the proportion of pairs
of successive submissions where all check style
errors in the first submission also existed in the
second submission among all pairs where the first
submission had check style errors. The failure rates
for fixing compiler errors and fixing test errors
follow the same operation. Note that a submission
might have both checkstyle errors and compiler
errors, and students might decide to focus on one
type of error for a given submission, for example,
fixing the check style errors and ignoring the
compiler errors. Such pairs of consecutive submis-
sions were not counted when computing the failure
rate for fixing compiler errors. This was the same as
the failure rate for fixing check style errors, that is,
the pairs where students only fixed the compiler
errors and did not address the check style errors in
the next submission were not counted.

(10–11) The rate of making new errors: The rate of
making new check style errors is the proportion of
pairs of consecutive submissions where a check
style error did not exist in the first submission but
appeared in the second submission. The rate of
making new compiler errors follows the same
operation. Code changes that cause new errors are
known as fix‐inducing changes [54]. Fix‐inducing
changes may be the result of quick attempts to fix

errors without a deep understanding of the problem
and the current code. Indeed, experienced program-
mers are less likely to make fix‐inducing changes
[21, 48]. We did not compute the rate of making
new test errors because the learning system only
showed one test error at a time. When a test error
did not appear in the first submission of a pair
but appeared in the second, this could mean
that either this was a new error for the student
or that the error already existed in the first
submission, but the system did not present it to
the student. We could not distinguish between
the two situations.

(12) The number of uncommented lines of code in
the final submission: We assumed that students
with good code‐writing skills would write a few
unnecessary lines of code while solving a problem.

Problem difficulties varied, and thus, the raw features
were not directly comparable across problems. We used
the median of a feature on a problem as an approxima-
tion of the problem's difficulty regarding the feature and
used the difference between the median and the feature's
value to make it more comparable across problems.
Features were then aggregated at the student level by
computing the mean of each feature over problems
completed by the student. We used the student‐level
features for subsequent analyses.

Note that most of the features were related to
submissions with errors, but we did not discard correct
submissions. Features 4–12 used all submissions. For
example, if a submission with a test error was followed
by a correct submission, it meant that the second
submission fixed the test error in the first submission.
This pair of submissions was used in the computation of
the failure rate for fixing test errors.

3.4 | External criteria

We used exam scores, self‐rated programming abilities,
and self‐reported programming language familiarity to
examine the criterion validity of the factors suggested by
factor analysis. Our rationale was that if the factors
capture students' code‐writing skills, they should be
related to these criteria. We did not use the course grade
because students' performance on homework problems
was a part of the course grade. Thus, it would be difficult
to interpret the association between the factors and
course grades because both variables were related to
homework performance.

There were three exams in the course, which
occurred in the 5th, 10th, and 16th weeks, respectively.
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An exam might involve anything covered up to the time,
with emphasis on the topics covered since the last exam.
The exam contained multiple‐choice and small program-
ming problems. All problems were automatically graded.
The multiple‐choice questions allowed one or two
attempts, while the programming problems allowed
unlimited attempts. Students had 1 h to complete an
exam. The maximum number of points possible was 100,
with programming problems accounting for over half of
the points. The average scores of exams one, two, and
three were 84.89 (SD = 13.88), 84.05 (SD = 18.61), and
84.15 (SD = 17.39), respectively.

The survey conducted before the beginning of the
course asked students about their programming experi-
ences. One survey question asked students to rate their
current programming abilities on a five‐point scale, with
five representing the highest level. The proportions of
students in levels 1–5 were 11.51%, 32.90%, 38.57%,
12.97%, and 4.05%, respectively.

Another question asked students which program-
ming languages they were already familiar with before
taking the course. Students could select “I've never
programmed before!” or one or more of the following
options: C, C#, C ++ , Java, JavaScript, MatLab, PHP,
Python, and Swift. We coded students' responses to this
question into four categories: (1) none (9.89%), students
selected “I've never programmed before!”; (2) Java
(17.67%), students only selected Java; (3) others
(22.53%), students selected languages other than Java;
(4) Java and others (49.92%), students selected Java and
at least one other language. We distinguished Java from
other languages because the course specifically taught
Java. We distinguished Java from Java and others
because students familiar with Java and at least one
other language might have more programming experi-
ence and better code‐writing skills than students only
familiar with Java.

3.5 | Analyses

As aforementioned, we split the homework submissions
into three datasets by submission dates because students'
code‐writing skills were expected to develop during the
course. We conducted factor analysis only in the
submission data set after exam two to develop a factor
model (see Figure 1). We used this data set rather than
the data set before exam one because of the concern that
students might be unfamiliar with the learning system at
the beginning of the course. This lack of familiarity
might influence their behaviors in the system and the
code writing‐related features, which in turn influenced
the factor analysis. However, after obtaining the factor
model, we conducted a measurement invariance test to
examine whether the factor model holds for the
submission data set before exam one. Readers may
wonder why we did apply a longitudinal factor analysis.
We argue that the longitudinal analysis is not applicable
to the data of this study and explain the reason in detail
in the last paragraph of Section 5.2.

3.5.1 | Factor analyses

We applied factor analyses to code writing‐related
features to discover the underlying factors accounting
for these features. We randomly selected two‐thirds of
the students for exploratory factor analysis (EFA) [4]. We
implemented EFA with principal factor analysis and
Promax rotation via the fa() function of the psych 2.1.6
library in R 4.1.1 [49]. We used promax rotation to allow
correlations between the factors.

We then conducted confirmatory factor analysis
(CFA) on the remaining one‐third of students to test
the factor model suggested by EFA. We implement CFA
via the cfa() function of the lavaan 0.6‐9 library in R 4.1.1

FIGURE 1 The datasets for different analyses.

ZHANG ET AL. | 7



[52]. For the goodness of fit, we considered the
comparative fit index (CFI), Tucker–Lewis index (TLI),
root mean square error of approximation (RMSEA), and
standardized root mean square residuals (SRMR). CFI
and TLI contrast the specified model with a model fitted
terribly and suggest an acceptable model fit with values
> 0.90 [29]. RMSEA represents the difference between
the specified model and a model fitted reasonably
and suggests an acceptable model fit with values < 0.08
[11]. SRMR is a normalized summary of the average
covariance residuals and suggests a satisfactory fit with
values near 0.08 [29]. The initial model fit was poor, so
we modified the factor model until finding an acceptable
fit based on the modification index [55].

3.5.2 | Measurement invariance test

Since the final CFA model was derived from the data set
after exam two, it was unclear whether it would
generalize to other datasets. To investigate this issue,
we tested the measurement invariance of the final model
between the datasets before exam one and after exam two
(see Figure 1). Given that these two datasets were from
the same students, we also examined the generalizability
of the final model by conducting the measurement
invariance test between the data set after exam two and a
data set collected in the Spring 2020 semester (also after
exam two). Note that in the Spring 2020 semester, the
course switched to an entirely online course 2 weeks
before exam two due to coronavirus disease 2019
(COVID‐19). Thus, to some extent, the Spring 2020 data
set was from a different sample in a different context.
Typically, the measurement invariance test includes four
sequential steps [47]: (1) the configural invariance model
for the model structure equivalence; (2) the metric
invariance model for factor loading equivalences; (3) the
scalar invariance model for item intercept equivalences;
and (4) the residual invariance model for item residual
equivalences. Each model is more stringent than the last
one. The difference in model fit indices between more
stringent and less stringent can inform us whether the
more stringent model is acceptable.

3.5.3 | Reliability and validity analysis

We examined whether the final factor model had
acceptable reliability and validity. Composite reliability
(CR), similar to coefficient alpha, evaluates the internal
consistency among features, which is the ratio of the true
score variance to the observed score variance [23]. A CR
larger than 0.7 is acceptable [26]. Three types of validity

were considered: convergent, discriminant, and criterion
validity. Convergent validity combines factor loadings,
their significance, and factors' average variance extracted
(AVE) to assess the degree that features converge on a
factor [25]. Good convergent validity is indicated by
factor loadings and AVE larger than 0.5 with p< .05.
Discriminant validity evaluates the degree to which the
factors are distinct [23]. If the square root of each factor's
AVE is larger than correlations between any factors,
factors are discriminant.

Criterion validity is the extent to which a factor relates
to a theoretically relevant variable, that is, a criterion [1].
This study assessed criterion validity via the associations
between the factors and the aforementioned external
criteria: exam scores, self‐rated programming ability, and
self‐reported language familiarity. Given that students'
code writing proficiency developed as the course went on,
submission traces before exam one might preserve more
differences in code writing proficiency caused by prior
experiences than submission traces after exam one or two.
Thus, we applied structural equation modeling (SEM) to
the submission traces before exam one for the criterion
validity analysis. Specifically, self‐rated programming
ability and self‐reported language familiarity were predic-
tors of the latent factors, which were predictors of exam
scores. We implement SEM via the sem() function of the
lavaan 0.6‐9 library in R 4.1.1 [52].

4 | RESULTS AND DISCUSSION

4.1 | RQ1: What latent factor model can
we identify underlying the features?

4.1.1 | EFA

We first examined whether the data were suitable for
factor analysis using Bartlett's test of sphericity and the
Kaiser–Meyer–Olkin (KMO) test [4]. Bartlett's test
indicated sufficient correlations among the features (χ2/
df= 36.59, p< .001). The overall KMO was 0.65, indicat-
ing that a relatively high proportion of variance in the
features might be caused by underlying factors, and all
single KMO values were greater than 0.55. Overall, these
results suggested that EFA was applicable to the data. We
determined the number of factors based on the parallel
analysis, which suggested four factors (Figure 2). Thus,
we conducted EFA with a four‐factor solution.

The initial EFA returned a pattern matrix where the
loadings of the number of uncommented lines of code on
all factors were smaller than 0.30. Further investigation
showed that the number of lines was weakly related to
the other features (only one correlation greater than
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0.30). Thus, this feature was discarded. The second EFA
returned a pattern matrix where all features have a
loading larger than 0.35 on one of the four factors
(Table 2, in bold). Table 2 shows that each factor was
strongly loaded by at least two features. We then
conducted CFA to test the factor structure.

4.1.2 | CFA

We began CFA with the four‐factor model suggested by
Table 2. Each factor was loaded by the features whose

loadings on the factor are in bold in Table 2. However,
the fit indices indicated a poor fit (see Table 3). The
modification index suggested allowing the number of test
errors to load on factor 3. We revised the model
accordingly and reconducted CFA. The model fit became
acceptable (model 2). However, the number of test errors
cross‐loaded on factors 2 and 3. We wondered whether
we could remove the loading of the number of test errors
on factor 2 as this would make factor 2 more interpret-
able. However, this also greatly decreased the model's fit
(model 3). The modification index suggested an error
correlation between the number of test errors and
compiler errors. After adding this correlation, the model
fit became acceptable again. CFI and TLI reached 0.90.
RMSEA and SRMR were 0.07. All factor loadings were
significant (p< .01; see Figure 3) 1. Thus, we selected this
model as the final model.

Table 4 displays each factor's composite reliabilities,
AVEs, and the square roots of AVEs. The composite
reliabilities of the first three factors were larger than or
close to 0.7, indicating acceptable internal consistency.
Their AVEs were larger or equal to 0.5, indicating
acceptable convergent validity. The square roots of their
AVEs were larger than their correlations with other
factors, suggesting good discriminant validity. For the
fourth factor, its CR was 0.46, indicating poor internal
consistency. Its AVE was 0.22, indicating poor conver-
gent validity. The square root of its AVE was only larger
than one of the correlations between it and other factors,
indicating poor discriminant validity. We evaluated the
criterion validity in Section 4.3.

FIGURE 2 Plot of parallel analysis.

TABLE 2 Pattern matrix with four factors.

Factor 1 2 3 4

Number of checkstyle errors 0.61 0.11 0.10 −0.00

Making new checkstyle errors 0.56 0.00 0.00 0.00

Number of compiler errors 0.00 0.98 0.10 0.00

Making new compiler errors 0.00 0.58 0.00 0.10

Number of test errors −0.15 0.59 0.16 −0.23

Time for solving test errors 0.11 0.00 0.77 0.00

The failure rate of fixing test
error

−0.00 0.26 0.65 0.00

Time for solving checkstyle
errors

0.00 0.00 0.12 0.36

Time for solving compiler errors 0.00 0.00 0.12 0.55

The failure rate of fixing
checkstyle errors

0.13 0.00 −0.12 0.35

The failure rate of fixing
compiler errors

0.00 0.26 −0.18 0.62

Proportion variation 0.07 0.16 0.10 0.09

Cumulative variation 0.07 0.23 0.33 0.43

1In Figure 2, the factor loading of the failure rate for fixing test errors
was 1.002, slightly greater than 1. This does not suggest that the model
is wrong. Factor loadings can be larger than one in models where
factors are related since they represent regression coefficients rather
than correlations [33].
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4.1.3 | Measurement invariance

Table 5 presents the results of the measurement
invariance test. Between the datasets before exam one
and after exam two of Fall 2019, the configural model
had an acceptable model fit, suggesting that the pattern
of feature loadings was invariant across the two datasets.
Thus, more stringent models were fitted to the data. The
decreases in CFI and TLI as well as the increases in
RMSEA and SRMR were smaller than the 0.01 cutoff
[14, 53] between configural and metric models, metric
and scalar models, and scalar and residual invariance
models. Similarly, for the measurement invariance test
between semesters, the fit statistics of configural model
as well as the change in fit statistics were also acceptable.
Overall, the results of the test between the two Fall 2019
datasets suggest that the factor model had measurement
invariance over the course, while the results of the test
between Fall 2019 and Spring 2020 datasets suggest that

the factor model had measurement invariance between
different samples and contexts.

4.2 | RQ2: What code‐writing skills do
the factors represent?

The first factor in the final model contained the number
of check style errors and the rate of making new check
style errors. Check style errors occurred when students'
code did not match the desired style, such as putting
whitespace between tokens and using the correct number
of spaces for indentation. Thus, we labeled the first factor
as code style proficiency. A correct code style usually
required students to consider one line at a time because
most style requirements were about a few tokens (e.g.,
whitespace between tokens). The correct indentation
level required students to consider a few lines simulta-
neously, but these lines were a small part of the code.

TABLE 3 Fit indices for the four‐factor models in CFA.

Model Modification CFI TLI RMSEA SRMR

Initial model ‐ 0.84 0.77 0.11 0.08

Model 2 Let the number of test errors load on factor 3 0.92 0.88 0.08 0.08

Model 3 Let the number of test errors not load on factor 2 0.79 0.69 0.13 0.08

Final model Add an error correlation between the number of test and compiler errors 0.93 0.90 0.07 0.07

Abbreviations: CFI, comparative fit index; RMSEA, root mean square error of approximation; TLI, Tucker–Lewis index; SRMR, standardized root mean square
residual.

FIGURE 3 The final confirmatory factor analysis model. Single‐headed arrows represent factor loadings, while double‐headed arrows
represent correlations. Values in the parentheses are standard errors. All coefficients are standardized and significant (p< .01).
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Thus, the response reflecting code style proficiency is at
the unistructural level of the SOLO taxonomy [38, 68].

The number of compiler errors and the rate of making
new compiler errors loaded on the second factor. A
compiler error occurred when the code was syntactically
incorrect. We expect that a student familiar with the Java
syntax would make fewer compiler errors. Thus, we labeled
the second factor as syntactic proficiency. Some compiler
errors were as simple as code style errors, such as missing a
“)” or “;”. Students can avoid such errors by simply focusing
on the current line. Other compiler errors were more
complex, such as “constructor Parent in class Parent cannot
be applied to given types.” Students need to consider
multiple lines and sometimes even most of the code in mind
to avoid such errors. Thus, the response to a problem that
requires syntactic proficiency may be at the unistructural
and multistructural levels of the SOLO taxonomy [38, 68].
Syntactic proficiency may be related to the skill of writing
semantics in Xie et al's framework of novice programming
skills [71]. If there is a format requirement, code style
proficiency may be also a part of this skill.

The number of test errors, the time for fixing test
errors, and the failure rate for fixing test errors loaded on
the third factor. Test errors occurred when the code was

free of check style and compiler errors but could not run
or generate the expected output given certain inputs. It
meant that the code was syntactically correct but
semantically incorrect, that is, failing to fulfill the problem
requirements. The loadings of three test‐error‐relevant
features suggest that this factor relates to students' ability
to write semantically correct code to solve a problem.
Thus, we labeled the third‐factor semantic proficiency.
Writing semantically correct code for a problem required
students to identify the problem objective and create an
unambiguous plan or pseudo code. Thus, the response
that reflects high semantic proficiency is at the relational
level of the SOLO taxonomy [38, 68]. Semantic proficiency
may be related to the skill of writing templates in Xie
et al's framework [71].

The failure rate for fixing compiler errors, the failure
rate for fixing check style errors, the time for fixing
compiler errors, and the time for fixing check style errors
loaded on the fourth factor. The first two features
concerned the accuracy of debugging compiler and check
style errors, while the last two features concerned the
speed of debugging. Compiler and check style errors relate
to syntax and style. Thus, we labeled the fourth factor
as syntactic debugging proficiency. Debugging requires

TABLE 4 Composite reliability (CR),
average variance extracted (AVE), and
discriminant validity.

Factor CR AVE

Discriminant validity

Code
style Syntactic Semantic

Syntactic
debugging

1. Code style 0.65 0.50 (0.71)

2. Syntactic 0.73 0.59 0.40 (0.77)

3. Semantic 0.78 0.56 0.07 0.48 (0.75)

4. Syntactic
debugging

0.46 0.22 0.54 0.54 0.25 (0.47)

Note: Diagonal in parentheses: the square root of AVE. Off‐diagonal: correlations between factors.

TABLE 5 Model fit statistics for the
measurement invariance test.

Model

Datasets before exam
one and after exam two
of Fall 2019

Datasets after exam two of Fall 2019 and
Spring 2020

CFI TLI RMSEA SRMR CFI TLI RMSEA SRMR

Configural
model

0.892 0.840 0.093 0.057 0.894 0.843 0.087 0.063

Metric
model

0.884 0.842 0.092 0.063 0.892 0.853 0.084 0.065

Scalar
model

0.886 0.857 0.088 0.063 0.895 0.868 0.080 0.065

Residual 0.878 0.864 0.085 0.064 0.898 0.886 0.074 0.064

Abbreviations: CFI, comparative fit index; RMSEA, root mean square error of approximation; TLI,
Tucker–Lewis index; SRMR, standardized root mean square residual.
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students to locate the error cause and repair the error [40].
The compiler message contained the line number of check
style and compiler errors. For all check style errors and
some compiler errors, the given line number provides
direct information about where to find the error. In such
cases, it is easy to locate the cause of these errors and
repair them. However, for some compiler errors, locating
the cause of the error requires students to understand
multiple lines or even most of the code. Thus, high
syntactic debugging proficiency may be at the multi-
structural level of the SOLO taxonomy [38, 68]. Xie et al's
framework does not explicitly consider debugging skills
[71], but novices are generally weak in this skill [40]. How
debugging skills develop along with other skills is an
important gap awaiting further research.

4.3 | RQ3: Do the factors relate to exam
performance?

We applied SEM to the submission traces before exam
one of Fall 2019 to investigate the associations between

the factors and students' exam performance as well as
prior experiences (Section 4.4). Features loaded positively
on the factors, but higher feature values meant worse
performance, such as a high number of compiler and
test errors. Thus, higher factor scores indicated lower
proficiencies. To facilitate the interpretation of the
relationships between these factors and exam perform-
ance as well as prior experiences, we inverted the sign of
the coefficients in Tables 6 and 7 so that higher factor
scores mean higher proficiencies. The factors positively
predicted all exams and together explained 34%, 27%, and
16% of score variances in exams one, two, and three,
respectively (see Table 6). The decrease in explained
variances from exams one to three was expected because
code writing factors were extracted from submission
traces before exam one. Exams two and three were
months later than the time that students made these
submissions. Overall, these correlations provided validity
evidence for the code‐writing factors.

4.4 | RQ4: Do students' prior
experiences relate to the factors?

The self‐rated programming abilities positively predicted
code writing factors except for code style (see the bottom
row of Table 7). The lack of correlation between code
style and self‐rated programming abilities was expected
as the code style requirement was specific to the course.
Students with high self‐rated abilities might not have
experience with this requirement. Overall, these correla-
tions matched the definitions of the factors.

The language familiarity groups had no difference in
code style proficiency. This is expected because students
familiar with programming languages before the class
might not be familiar with the code style requirement of

TABLE 6 The standardized coefficients of code writing factors
on exam scores.

β (SE) Exam 1 Exam 2 Exam 3

Code style 3.30 (0.98)*** 1.99 (1.33) 4.66 (1.41)***

Syntactic 6.41 (0.68)*** 6.82 (0.93)*** 3.67 (0.90)***

Semantic 1.43 (0.79) 4.88 (1.15)*** 3.45 (1.14)**

Syntactic
debugging

4.84 (0.85)*** 5.82 (1.19)*** 6.16 (1.21)***

R2 .34 .27 .17

**p< .01; ***p< .001.

TABLE 7 The standardized coefficients of prior experiences on code writing factors.

β (SE) Code style Syntactic proficiency Semantic proficiency Syntactic debugging

Self‐rated ability 0.02 (0.02) 0.21 (0.04)*** 0.12 (0.04)** 0.23 (0.04)***

Reference group: Nonea Others 0.06 (0.06) 0.60 (0.14)*** 0.14 (0.13) 0.23 (0.13)

Java 0.05 (0.06) 1.02 (0.15)*** 0.37 (0.14)* 0.25 (0.14)

Java and others 0.08 (0.07) 0.98 (0.15)*** 0.35 (0.14)* 0.51 (0.14)***

Reference group: Othersa Java 0.00 (0.00) 0.43 (0.11)*** 0.23 (0.10) 0.01 (0.10)

Java and others 0.00 (0.02) 0.39 (0.09)*** 0.21 (0.09) 0.27 (0.09)*

Reference group: Javaa Java and others 0.03 (0.03) −0.04 (0.09) −0.02 (0.09) 0.26 (0.09)*

Note: *, **, ***p< .05, .01, .001 after BY correction.
aLanguage familiarity was dummy coded, and the reference group was coded as 0. For example, the coefficient in the second cell of the code style column was
0.06, which meant that the Others group on average scored 0.06 higher than the None group in the code style factor. Three structural equation models were
fitted, each time with a different language familiarity group as the reference. Redundant coefficients were not shown.
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the course in this study. The group of none scored lower
than the other groups in syntactic proficiency, and the
group of others scored lower than groups of Java as well
as Java and others, which in turn had no difference in
syntactic proficiency. This result is also expected because
students in this study used Java to solve programming
problems. In terms of semantic proficiency, the group of
none had no difference from the group of others but
scored lower than groups of Java as well as Java and
others in semantic proficiency. This difference is partially
expected and suggests that semantic proficiency might
capture some information about students' familiarity
with Java. The group of Java and others scored higher in
syntactic debugging than the other groups. This result
matches expectations. The group Java and others might
have more programming experience than the group of
Java. In comparison with the group of none and others,
the group of Java and others knew more about Java and
might process Java‐related errors more accurately and
quickly.

Overall, the associations between code writing factors
and exam scores as well as prior experience were in line
with the factors' interpretation. These results support the
definitions of the factors and suggest acceptable criterion
validity.

5 | CONCLUSION

This study utilized programming traces and factor
analysis to explore the latent factors of novice program-
mers' code‐writing skills. We identified four factors, and
the factor model showed measurement invariance
between the data set from which the model was
developed and two new datasets, one from the same
sample but collected at a different time point and
another from a different sample and context (onsite
course vs. online course). Three of the four factors had
acceptable composite, convergent, and discriminant
validity. The four factors predicted the scores in exams
months later and were related to self‐rated program-
ming abilities and language familiarity in a way
matching the definitions of these factors, indicating
acceptable criterion validity. We linked these factors to
the SOLO taxonomy [8], a popular framework for
evaluating novice programmers' responses in the field
of CS education [16, 38, 68]. Code style and syntactic
proficiencies may be related to the skill of writing
semantics in a framework of novice programming skills
[71], while semantic proficiency may be related to the
skill of writing templates in the same framework. The
framework lacks skills explicitly related to debugging,
suggesting research opportunities.

5.1 | Limitations and future research

Although the syntactic debugging factor showed good
criterion validity, it had poor internal consistency, CR,
and discriminative validity. The fit of the four‐factor
model was acceptable but far from satisfactory. Overall,
the final factor model has rooms for improvement.

The course for this study was taught in Java and
hosted on a web‐based, problem‐driven learning system.
The four‐factor model may not generalize to other
learning environments and languages. Another limita-
tion is that students in this study might not be a
representative sample of CS1 course students because
90.11% of students in this study reported familiarity
with at least one programming language before taking
the course. We argue that participants could still be
considered novice programmers as even a 4‐year CS
program may only turn a student into a competent
programmer [69]. However, we acknowledge that
further research may be necessary to validate whether
the model is applicable to a group lacking any prior
programming experience.

The four factors may not fully capture all the skills
involved in code writing as they explained only 43% of
feature variances. The large proportion of unexplained
variance suggests other underlying factors. The four‐
factor model did not account for the number of
uncommented lines of code, a feature that was removed
because of small loadings. In addition, the characteristics
of the data set prevented us from computing more
features. For instance, the existence of compiler errors
prevented us from converting the code in each submis-
sion to ASTs and computing the AST edit distance
between two submissions [50]. The data set did not
contain individual student keystrokes or code edits, only
code submissions, preventing us from computing more
fine‐grained features. With more features, more code‐
writing skills may be uncovered.

We selected the code‐writing features based on prior
studies and extracted them from students' programming
traces in real‐world programming tasks. Thus, the
content validity of the features might be appropriate.
Nevertheless, a formal evaluation of the content validity
entails experts' judgment of the relationship between the
features and the code‐writing skill [1]. Future research
may invite experts to formally evaluate the content
validity of the code‐writing skill model developed from
programming trace analysis.

We were also unable to use our four‐factor model to
investigate how code‐writing skills develop over time
throughout the duration of the course. This is because
the difficulties of homework programming problems
gradually increased over the duration of the course, as
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evidenced by Table 1, where students made more
syntactic and test errors on a problem after exam two
than before exam one. We deducted the median from the
raw feature on a problem to account for its difficulty and
to make features more comparable across problems.
However, after such processing, feature values repre-
sented students' relative standings in the course, and so
did the code writing factor scores. Thus, changes in a
student's factor scores between different stages of the
course (e.g., before exam one and after exam two)
represented their change in relative standings rather than
their development in code‐writing skills. As such, the
increase in some students' relative standings implies a
decrease in others, even though it is possible that
proficiency in code writing skills increases for all
students. Other studies that want to investigate students'
development based on programming traces may face the
same limitation. As such, it is critical for further work to
address this issue.

5.2 | Implications

Our factor analyses identified four latent factors that may
represent code‐writing skills. Most pairs of skills had
weak to moderate associations (see Figure 3), indicating
that they are quite distinctive. CS1 instructors may wish
to differentiate their instruction based on students'
varying levels of proficiency in these skills. For instance,
the correlation between syntactic proficiency and syntac-
tic debugging was 0.54, implying that some students
might have a good understanding of Java syntax but not
know how to debug Java syntactic errors. This is in line
with prior research [2, 40] and suggests that CS
instructors should explicitly teach novices debugging
strategies. At the beginning of a course, it may be
challenging to know which skills a student is weak in
due to the scarcity of programming traces, and thus, it is
difficult to adapt instructions directly to students' code‐
writing skills. In this case, instructors may differentiate
instructions based on students' self‐reported language
familiarity and programming ability because these
variables were related to code‐writing skills. For exam-
ple, students familiar with either Java or other program-
ming languages showed lower syntactic debugging
proficiency than those familiar with both Java and at
least one other language. As such, it may be beneficial to
differentiate debugging instruction between the two
groups.

The four factors explained 17%–34% of the variance in
exam scores. Large unexplained variances may indicate
that the factors do not fully capture code writing
proficiency. However, it may also be the opposite—final

performance in programming tests or tasks may not
accurately represent programming proficiency. Indeed,
researchers have argued that a grade based on a final
program may not be a valid indicator of programming
proficiency because it does not consider the process that
leads to the final program [12, 35, 64]. In this regard,
assessing programming proficiency should consider both
the programming processes and outcomes. Compared
with typical exams focusing on programming outcomes,
which are summative [32], an assessment combining
processes and outcomes is more formative because it may
provide more accurate and comprehensive diagnosis
information about programming skills. For example, for
the CS1 course in this study, combining the factor model
and exam performance may bring insights about which
code‐writing skills students at a particular performance
level are weak in. Such understanding may help
instructors in designing more individualized instruction
to foster weak skills. For a programming course different
from this study, the factor model may not be directly
applicable, but the same approach could be used to
develop a new factor model fitting the course. That is,
defining features theoretically related to code writing,
extracting the features from the programming traces, and
applying factor analysis to obtain the factor model.

This study also found that students unfamiliar with
any programming language had lower proficiency in
three of the four code‐writing skills compared with their
peers in the early stage of a CS1 course. This result
suggests that CS1 instructors should pay particular
attention to these students. Moreover, learning code
style, syntax, semantics, and debugging together may be
too overwhelming for individuals without prior program-
ming experience. It may be difficult to disentangle and
sequence instructions in syntax, semantics, and debug-
ging, but code style can be learned after these other skills
have begun to be developed. Thus, if writing code in a
good style is one of the instructional goals, it may be
better to put it aside at the beginning of a CS1 course and
introduce it after students have experience with other
subskills.

Overall, the results are promising and call for more
investigation into programming trace analysis and code‐
writing skills. A valid theory of novice programmers'
code‐writing skills would go a long way toward guiding
the instruction of CS1 courses.
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