

Using Problem Similarity- and Order-
based Weighting to Model Learner
Performance in Introductory Computer
Science Problems

Yingbin Zhang
South China Normal University
yingbinzhang25@hotmail.com

Aysa Xuemo Fan
University of Illinois at Urbana-
Champaign
xuemof2@illinois.edu

Juan D. Pinto
University of Illinois at Urbana-
Champaign
jdpinto2@illinois.edu

Luc Paquette
University of Illinois at Urbana-
Champaign
lpaq@illinois.edu

The second CSEDM data challenge aimed at finding innovative methods to use students’ programming
traces to model their learning. The main challenge of this task is how to decide which past problems are
relevant for predicting performance on a future problem. This paper proposes a set of weighting schemes to
address this challenge. Specifically, students’ behaviors and performance on past problems were weighted
in predicting performance on future problems. The weight of a past problem was proportional to its
similarity with the future problem. Problem similarity was quantified in terms of source code, problem
prompts, and struggling patterns. In addition, we considered another weighting scheme where past problems
were weighted by the order in which students attempted them. Prior studies have used problem similarity
and order information in learner modeling, but the proposed weighting schemes are more flexible in
capturing problem similarity on various problem properties and weighting various behaviors and
performance information on past problems. We systematically investigate the utility of the weighting
schemes on performance prediction through two analyses. The first analysis found that the weighting
schemes based on source code similarity, struggling pattern similarity, and problem order improved the
prediction performance, but the weighting scheme based on problem prompts did not. The second analysis
found that the weighting scheme allows a simple and interpretable model, such as logistic regression, to
have performance comparable to state-of-the-art deep-learning models. We discussed the implications of the
weighting schemes for learner modeling and suggested directions for further improvement.

Keywords: learner modeling, programming trace, problem similarity, knowledge tracing, performance
prediction

63 Journal of Educational Data Mining, Volume 15, No 1, 2023

1. INTRODUCTION
The application of artificial intelligence in education (AIED) has the potential to address some
long-existing challenges, such as “mentors for every learner” and “lifelong and lifewide
learning” (Woolf et al., 2013). AIED can offer learners intelligent learning environments that
are affectively sensitive and provide personalized support. The learner model is one of the key
components of AIED (Luckin et al., 2016), which contains information about the learner, such
as their knowledge and emotional states. The second CSEDM data challenge1 presented a
learner modeling task where participants used students’ programming problem-solving data in
the first half of an introductory computer science course to predict performance on problems
in the second half (Section 2.1 provides more details). The challenge is how to decide which
problems in the first half of the course are relevant for predicting performance on a problem in
the second half. Treating all problems in the first half the same is not reasonable because some
of them may not involve the knowledge and skills that are necessary for solving the problem
in the second half.

The most common practice to address such a challenge is perhaps knowledge tracing
(Corbett and Anderson, 1994), which has been shown to effectively enhance learning when
integrated into learning systems (Aleven, 2010; Anderson et al., 1995). Knowledge tracing
typically entails explicitly defining knowledge components (KC) and mapping KCs to
problems. The mapping is used as a de facto way of determining which prior problems are
relevant for predicting performance on a future problem. Nevertheless, the process of
developing a high-quality mapping between KCs and problems is a time and effort-consuming
process.

We address the second CSEDM challenge by proposing a set of weighting schemes based
on problem similarity. Our approach is based on the assumption that, when predicting
students’ performance in a future problem, past problems that are similar to the future problem
will be more predictive than past problems dissimilar to the future problem. In addition, we
consider another weighting scheme in which past problems are weighted based on the order in
which students attempted them. This weighting scheme aims at accounting for the decay
impact of past problems: the earlier a problem was attempted, the less impact it had on the
performance in a future problem (Gong et al., 2011). Utilizing information about problem
similarity and order is common in learner modeling, but methods that do so are (1) typically
applying the information to weight a limited number of features (e.g., response correctness),
and (2) some of them are quite complex and require significant computing power, especially
for deep-learning-based models. By contrast, our approach allows applying the information
about problem similarity and order to weight various features in a simpler way, and it can be
implemented in a model as simple as logistic regression.

This paper systematically investigates the impact of various weighting schemes on
prediction performance through two analyses. The first analysis compares models with and
without weighting to investigate to what extent weighting could improve the predictive
performance and which weighting scheme performed better. The second analysis compares the
weighting schemes with the state-of-the-art (SOTA) learner modeling methods to investigate

1 https://sites.google.com/ncsu.edu/csedm-dc-2021

64 Journal of Educational Data Mining, Volume 15, No 1, 2023

whether using problem similarity and order in a simple way could achieve the same predictive
performance.

1.1. PROGRAMMING PROCESS ANALYSIS

Researchers have used programming traces to explore programming behaviors and
proficiencies and predict future course performance. One well-known metric based on
programming traces is the Error Quotient (Jadud, 2006a). The Error Quotient characterizes the
extent to which a student struggles with syntax errors while solving a programming problem
(Jadud, 2006a). Its computation has four steps: (1) generate pairs of consecutive compilation
events on a problem; (2) assign a score to each pair based on an algorithm; (3) divide the score
by 11, which is the maximum possible value (the maximum value is 9 in a more complex
version; Jadud, 2006b); (4) compute the average of the normalized scores of all pairs. The
algorithm in step 2 penalizes the student if they consecutively make the same errors. A pair of
compilation events gets a score of 0 if at least one event does not end with any error, 8 if the
two events have different types of errors, and 11 if both events have the same error type. Thus,
a student with a high Error Quotient struggles with the problem more than a student with a low
Error Quotient. Studies have found that Error Quotient predicts course performance (Jadud,
2006b; Tabanao et al., 2011).

Error Quotients focus on students’ compilation behaviors and do not consider how students
handle the semantic errors of a program (Carter et al., 2015). The Normalized Programing
State Model (NPSM) addressed this limitation by modeling students’ programming activities
in terms of the change in both syntactic and semantic correctness (Carter et al., 2015). It
divides students’ program states into eleven categories based on syntactic and semantic
correctness. For example, a program with unknown semantic correctness might be in a state
that was edited to be syntactically correct by the student. This state might switch to a state of
execution with the debugger on or off. The proportion of time in each state was used as a
feature predicting course performance. The results showed that NPSM had better predictive
power on assignment grades and final course grades than the Error Quotient. For a detailed
overview of these and other related metrics, see Villamor (2020).

Based on the above metrics and other programming process studies, we engineered a set of
features related to programming errors, behaviors, and debugging (see Table 3 in Section 2.2).
The computation of our features was not the exact same as these metrics due to the properties
of the dataset of the second CSEDM data challenge. For example, in the dataset, a submission
was always executed with the debugger off, and the time that students worked on a submission
or problem could not be calculated accurately.

1.2. KNOWLEDGE TRACING AND PERFORMANCE PREDICTION

Advances in the modeling of student knowledge have come about as the practice of
knowledge tracing or inference, which has improved in recent decades, largely driven by the
development of student models in intelligent tutoring systems (ITS; Shute and Zapata-Rivera,
2012). Knowledge tracing refers to the process of identifying what a learner knows at any one
time. The most well-known knowledge tracing algorithm is Bayesian Knowledge Tracing
(BKT), which uses a hidden Markov model that estimates student knowledge as a latent
variable and updates these estimates based on continuous feedback in the form of student
performance on future tasks (Corbett and Anderson, 1994). While also typically considered a
form of knowledge tracing, Performance Factors Analysis (PFA; Pavlik Jr et al., 2009),

65 Journal of Educational Data Mining, Volume 15, No 1, 2023

another popular approach, concerns itself solely with using prior performance to directly
predict future performance rather than estimating latent student knowledge explicitly. One
common trait of some knowledge tracing and performance prediction models is the necessity
of explicitly defining the KCs—including skills, facts, or concepts—required to complete each
step or problem correctly. KC labels are meant to capture how students develop different skills
at different rates, and therefore success on a particular problem is dependent on having
developed the requisite skill for that problem. Skills unrelated to the problem have no direct
bearing on the probability of success. Ignoring this fact—that is, weighting all past problems
the same, regardless of their dissimilarity to the future problem for which success is being
predicted—means treating related and unrelated skills the same, causing the model to retain
much irrelevant information. In other words, KC labels help us to weight past problems
differentially when predicting performance on future problems.

However, developing high-quality KC labels can be an arduous task requiring subject
domain expertise and careful iterative refinements. The KC labels have such profound
implications for the accuracy of the knowledge tracing algorithm that specific techniques have
been devised for evaluating the KC labels themselves (Cen et al., 2006; Stamper et al., 2011).
As an alternative, modern techniques, such as deep learning knowledge tracing (DLKT; Sarsa
et al., 2022), compensate for the lack of KC labels by automatically identifying the
relationship between problems and weighting prior performance and behaviors based on this
relationship rather than KC labels. Specifically, Deep Knowledge Tracing (DKT; Piech et al.,
2015) and other recurrent-neural-network-based approaches—such as Dynamic Key-Value
Memory Networks (DKVMN; Zhang et al., 2017) —model student performance as a sequence
of successes or failures, carrying pertinent information from past problems into the prediction
of future problems. Self-attention-based models such as Self-Attention Knowledge Tracing
(SAKT; Pandey and Karypis, 2019) or Separated self-AttentIve Neural knowledge Tracing
(SAINT; Choi et al., 2020) instead follow a feed-forward architecture that searches for
similarities among problems in parallel, while still preserving order information through the
use of positional embeddings. The primary advantage of all these DLKT techniques is that
they allow for a very large hypothesis space wherein relationships between problems can be
automatically identified. While KCs can still be explicitly defined in these models—along
with additional features in models such as Exercise-aware Knowledge Tracing (EKT; Liu et
al., 2021) or Neural Pedagogical Agent (NPA; Lee et al., 2019)—the inputs are commonly
kept as simple pairs of {problem ID, correctness}. Bypassing manual KC mapping and feature
engineering hands the reins to the network’s backpropagation algorithm, which then takes care
of identifying appropriate weights based on relationships in the input data. The high
representational power of these models, however, comes at the cost of complexity and
opaqueness.

Within the realm of performance prediction for computer science (CS) education,
approaches have included temporal-pattern-based approaches such as Recent Temporal
Patterns (RTP; Mao et al., 2019), as well as the Additive Factor Model (AFM; Yudelson et al.,
2014), which is a member of the Item Response Theory (IRT) family. Some recent work has
relied on DLKT for programming performance prediction (e.g., Shi et al., 2022; Wang et al.,
2017), which tends to have high predictive performance but is difficult to interpret.

1.3. ITEM SIMILARITY IN EDUCATION

The similarity of educational items has many applications, such as automatic recommendation
and student and domain modeling. The basic procedure of applying item similarity consists of

66 Journal of Educational Data Mining, Volume 15, No 1, 2023

three steps (Pelánek, 2020): choosing data of items, computing the similarity matrix, and
application. The first step is deciding the input data of items or which item property the
similarity is about. We can measure item similarity in terms of item statement and metadata
(e.g., the KC of an item), item solutions, and item performance (Pelánek, 2020). Taking
programming problems as an example, the item statement is the prompt that explains the
problem requirement. Item solutions can be the sample code provided by the instructor or the
code submitted by students. Item performance can be the correctness of students’ code, the
number of students’ attempts, and the time on the problem. The second step is to compute the
pairwise item similarity matrix. There are a variety of measures for each type of input data
(Cechák and Pelánek, 2021). For example, when the input data is solution code, researchers
may first represent the code with a set of vectors via natural language processing techniques
(e.g., bag-of-words models; Pelánek et al., 2018). Based on two problems’ representation
vectors, their similarity may be quantified by the Euclidean distance, cosine similarity, etc.
The choice of input data has been found to be more important than the choice of similarity
measures (Cechák and Pelánek, 2021; Pelánek et al., 2018). The final step is manipulating the
similarity matrix for application. For example, with the similarity matrix, we can find the
nearest neighbors of the item that a student just failed and recommend one neighbor item to
the student (Pelánek, 2020).

Item similarity has been used in learner modeling but is typically referred to as item
relations. For methods that entail explicit mapping between items and KCs, such as BKT and
PFA, items’ relations are measured in terms of metadata, i.e., their common KC. For methods
that do not require an explicit mapping, such as DKT and SAKT, items’ relations are typically
captured based on item performance data (Pelánek, 2020). Recent developments in DLKT
have started taking advantage of other types of data to capture item relations. For example,
code-DKT extends DKT by using both code correctness and the representation of code content
(Shi et al., 2022). That is, the item relations in code-DKT are measured by both item solution
and performance data. Note that these models do not use item relations in a way aligning with
the three-steps approach because they do not use an explicit similarity matrix, and item
relations are computed implicitly during the training of model parameters. In Pelánek’s (2020)
words, these techniques capture item relations using a “model-based approach,” while the
three steps capture item relations using an “item similarity approach.” Examples of other
“model-based approaches” are item response theory (IRT) models (Embretson and Reise,
2000), canonical correlation analysis (Sahebi and Brusilovsky, 2018), and tensor factorization
(Zhao et al., 2020).

1.4. THE RATIONALE BEHIND SIMILARITY WEIGHTING AND THE CURRENT STUDY

The current study proposes a way of using the “item similarity approach” (Pelánek, 2020) to
capture item relations and then applying the relation information to learner modeling in the
context where an explicit mapping between KCs and problems is lacking. As mentioned
earlier, the KC mapping helps us to weight past problems differentially when predicting
performance on future problems. Similarity weighting serves as an alternative to this mapping.
Prior studies have used similarity weighting implicitly through the “model-based approach”
(e.g., Piech et al., 2015; Pandey & Karypis, 2019; Zhao et al., 2020). The current study uses
similarity weighting explicitly. Nevertheless, the basic rationale is the same: a past problem’s
weight to a future problem is proportional to their similarity. For a future problem where
students’ performance is to be predicted, students’ behaviors and performance on a past
problem that is similar to it are more indicative of its requisite knowledge than behaviors and

67 Journal of Educational Data Mining, Volume 15, No 1, 2023

performance on a past problem dissimilar to it. Thus, behaviors and performance on past
similar problems are more important in predicting performance on the future problem and
should be assigned larger weights than dissimilar problems. Note that similarity is not limited
to KCs. Two problems that do not involve the exact same KCs may still be similar because
their KCs may be related to each other. For instance, iteration can be dependent on
conditionals. Performance on a problem about conditionals may not rely on knowledge about
iteration, but performance on a problem about iteration relies on knowledge about
conditionals. Thus, the two problems are still similar, and performance on one problem is
useful in predicting performance on another. Analogously, some complex KCs may only exist
in problems later in a course because the instructor may not introduce these KCs until students
master the prerequisite KCs. However, performance on problems about the prerequisite KCs is
still useful in predicting performance on problems about the complex KCs.

The proposed weighting method differs in how it uses item similarity from the “model-
based approach” for learner modeling. As mentioned before, the “model-based approach” uses
item similarity to weight past problems implicitly while training the prediction model. For
example, in DKT and SAKT (Pandey and Karypis, 2019; Piech et al., 2015), the various
matrices (e.g., projection and embedding matrices) in the neural network function as a way to
assign weights to past problems. The final weight of a past problem to a future problem is a
non-linear transformation and combination of these matrices, which are iteratively optimized
by algorithms like gradient descent. In methods based on matrix or tensor factorization
(Sahebi et al., 2016; Zhao et al., 2020), the weight of a past problem to a future problem is
determined by the Q matrix, which is a mapping between problems and latent concepts and
optimized during model training. In IRT models (Embretson and Reise, 2000), the weight
relies on item discrimination coefficients. Specifically, the performance on an item with high
discrimination in a dimension impacts the ability estimates of this dimension more than the
performance on an item with low dimension discrimination, and the ability estimates influence
the probability of succeeding on items with high dimension discrimination more than items
with low dimension discrimination. Item discrimination coefficients are optimized during
parameter estimation. By contrast, in the current study, the weight of a past problem to a
future problem is a linear transformation of their similarity (see Section 2.3.6), derived from
one-time computation before training the prediction model. Thus, the proposed weighting
method uses similarity weighting explicitly.

The explicit use of similarity weighting prevents optimizing the weights for a prediction
task, but it allows experts to specify which problem properties the similarity is based on and
what information or features to weight. For example, two problems’ similarity in code content
or correctness can be used to weight code correctness, content, errors, and the number of
attempts on past problems. That is, a single weighting approach can be flexibly applied to all
problem-specific features. Some DLKT models, such as the long-short-term-memory-based
DKT, can also weight any features, but our approach can be more interpretable because the
weighted features can be used by simpler machine learning (ML) models (e.g., logistic
regression).

We propose three similarity weighting schemes, each based on one of Pelánek’s (2020)
three input data types (see Sections 2.3.2 to 2.3.4): problem statement, problem solutions, and
problem performance. In addition to weighting problems by similarity, we also follow existing
learner modeling techniques (e.g., PFA-decay model) in weighting problems by the order in
which students attempted them to account for the decay impact of past problems. The rationale
is that behaviors and performance on a recent problem are more indicative of their current
knowledge state than behaviors and performance on an earlier problem (see Section 2.3.5 for

68 Journal of Educational Data Mining, Volume 15, No 1, 2023

details). The four weighting schemes were applied when aggregating information over past
problems to feature vectors (e.g., the proportion of solved problems; see Section 2.3.1). With
these feature vectors as input, ML models working with tabular data (e.g., logistic regression)
can access information about problem relations and attempt order, which are two types of
information that these methods typically have difficulty using but which DLKT can exploit
(Gervet et al., 2020). Thus, to some extent, the weighting schemes show a framework for
using problem similarity and order weighting to engineer useful features and contribute to
feature engineering in performance prediction.

The current study evaluates the proposed weighting schemes by comparing their prediction
performance to the model without weighting and the models using weighting via the “model-
based approach” in the task of the second CSEDM data challenge. In addition to the proposed
weighting schemes and empirical evaluations, another contribution of this study is comparing
the relative importance of various programming trace features in programming prediction.

2. METHOD

2.1. DATA

The data was collected from an introductory computer science (CS1) course and provided by
the second CSEDM data challenge. The CS1 course requested students to complete five
assignments that were released one by one. Each assignment contained ten problems, but
problems within the same assignment did not necessarily involve the same programming
knowledge. Problems within an assignment were released simultaneously, had the same
deadline, and could be completed in any order.

The data challenge included two phases. Both phases asked participants to solve the same
tasks but used different training data. In the within-semester phase, the training data included
373 students in the CS1 course in the Spring of 2019 and 367 students in that course in the
Fall of 2019 (see Table 1), while the training data in the cross-semester phase only included
247 students of the Spring 2019 sample. The test data in both phases were a subset of 123
students who participated in the CS1 course in the Fall of 2019.

Table 1: Training and test data in cross-semester and within-semester phases.

Phase Cross-semester Within-semester

Training data Spring 2019 sample one
(247 students)

Spring 2019 samples one (247 students)
and two (126 students) +

Fall 2019 training sample (367 students)
Test data Fall 2019 test sample (123 students)

Each phase contained two tracks with different prediction tasks. This paper focuses on

track 1, which asked participants to predict whether students would struggle with each of the
20 later problems in the CS1 course based on their submission traces on the 30 early problems.
Struggling was defined as not successfully solving a problem or solving the problem with
more submissions than 75% of their peers.

Table 2 displays the distribution of struggling in the 20 later problems in various samples.
Note that each observation is a unique combination of a student and one of the 20 later
problems. As such, the total number of observations is around 20 times the number of students
in the dataset.

69 Journal of Educational Data Mining, Volume 15, No 1, 2023

Table 2: The distribution of labels in various samples.

Student-problem observations Struggling Not struggling
Spring sample one 1,084 (25.80%) 3,117 (74.20%)
Spring sample two 388 (25.68%) 1,123 (74.32%)
Fall training 1,759 (25.05%) 5,262 (74.95%)
Fall test 633 (26.77%) 1,732 (73.23%)

The submission traces on problems contained information about syntax errors, test scores,

and source code of each submission. The test score, ranging from 0 to 1, depended on whether
the submission had syntax errors and how many tests it passed. If the submission had at least
one syntax error or passed no test, the test score would be 0. If it had no syntax error and
passed at least one test, the test score would be larger than 0. A score of 1 meant the
submission passed all tests and was correct. Thus, if a submission without syntax error had a
score smaller than 1, it meant that it failed at least one test and had semantic errors. The
number of tests varied across problems.

2.2. FEATURE ENGINEERING

A total of 65 features were computed on the submission traces based on the script provided by
the data challenge organizer (five features), from the winning entry in the first CSEDM data
challenge (four features; Natti and Athrey, 2019), from the literature on programming process
analysis (33 features), and from our feature engineering for the competition (23 features).2
These features either characterize students or the 20 later problems (see Table 3). Students’
characteristics include four categories: basic (e.g., the percentage of the 30 early problems that
students struggled with), error-related features (e.g., the percentage of submissions on the
early problems that contain syntax errors), debugging-related features (e.g., the average
difference in test scores between two consecutive submissions), and others (e.g., the number
of days with at least one submission). Table 3 indicates the sources of these features. For
simplicity, some rows include multiple features, where the number of features is indicated in
parentheses. For example, row 20 contains two features, the change in the percentage of
problems that students struggled with from the first to the third assignments and such change
in the percentage of problems that students solved. We argue that such changes may represent
the growth in students’ knowledge or skills, and the variation in the changes may represent
differences in learning rates. The appendix presents the details of other features.

We also computed three student-problem interaction features to capture the difference
between students’ ability and problem difficulty. These features are inspired by
psychometrics, specifically, the Rasch model (von Davier, 2016), where the probability that an
examinee answers a problem correctly relies on the difference between their ability and the
problem difficulty. For example, in the first student-problem interaction feature, the
percentage of problems that a student did not struggle with may be viewed as the student’s
ability, while the percentage of students that struggled with the problem may be viewed as the

2 The code for this paper is public in Github: https://github.com/yingbinz/JEDM-similarity-weighting

70 Journal of Educational Data Mining, Volume 15, No 1, 2023

problem difficulty. While some models, such as ensemble trees, can implicitly capture feature
interactions, we explicitly computed such interaction features to ease their interpretation.

In addition, we computed two sets of features aimed at capturing the linguistic information
of students’ code submissions. We first used the term frequency-inverse document frequency
(TF-IDF) to compute linguistic features. This is inspired by natural language processing (NLP;
Jurafsky and Martin, 2009), where information systems use TF-IDF features to retrieve
documents on relevant topics. In our case, we treated each student’s final submission on each
problem as a natural language document and each token as a word. In this way, we obtained a
50-element embedding vector for each submission using the Scikit-learn Python library.
However, the elements are zeros in most code submissions and have little variation. We
selected elements that were not zero in at least 10% of submissions as features in our model.
Fifteen elements met this criterion.

One major limitation of using TF-IDF and similar NLP approaches on code is that they
explicitly capture linguistic information but ignore the structure of code. For this reason, we
also applied code2vec to the source code of each submission and obtained a 384-element
embedding vector for each submission. The details of this implementation are described in
Section 2.3.2. We then performed dimensionality reduction using principal component
analysis to reduce the 384-element embedding vector to a set of 16 features.

Among the 65 features in Table 3, 52 would be weighted if weighting schemes were used
and were marked in gray. We did not weight features #1, #18, #19, and #21 because they were
more about students’ effort or problem-solving behaviors rather than performance. We did not
weight features #4 and #20 because weighting was not applicable to them. For example, the
median of weighted submissions might not be meaningful. Features #9 and #10 were not
weighted because features highly related to them were weighted (e.g., #11 and #12). Problem
features could not be weighted.

Table 3: The categories and sources of features.

Student

Basic features Source
1 # problems that a student attempted

Organizer
2 % problems that a student solved eventually

3 % problems that a student solved on the first
submission

4 Median and max submissions on early problems (2)

5 Mean submissions on early problems
Engineering 6 % problems that a student struggled with

Error-related features
7 % problems on which a student made syntax errors

1st data challenge 8 % problems on which a student made semantic errors
9 % submissions that contain syntax errors

Carter et al. (2015) 10 % submissions that contain semantic errors
11 Average number of syntax errors on a problem Becker et al. (2016)
12 Average number of unique test scores on a problem Engineering

71 Journal of Educational Data Mining, Volume 15, No 1, 2023

Debugging
13 Rate of fixing syntax errors

Jadud (2006a) 14 Rate of making new syntax errors
15 Rate of improving test scores

Engineering 16 Average difference in test scores between two
consecutive submissions

17 Transition strength between code states (6) Carter et al. (2015)
Others

18 % problems that a student made a submission less
than 15s Pinto et al. (2021)

19 Number of days with at least one submission Yeckehzaare et al.
(2022)

20 Change in rows 2 and 6 from the first to the third
assignments (2) Engineering

21 The number of lines added, deleted, and modified Baumstark and
Orsega (2016)

22 TF-IDF vectors (15) Engineering
23 Principal components of code2vec vectors (16) Shi et al. (2021)

Problem

24 % students that struggled with the problem Engineering
25 % students that made syntax errors on the problem

1st data challenge 26 % students that made semantic errors on the problem

Student-
problem
interaction

27 % problems that a student did not struggle with
- % students that struggled with the problem

Rasch model (von
Davier, 2016)

28 % problems on which a student did not make syntax
errors - % students that made syntax errors on the
problem

29 % problems on which a student did not make semantic
errors - % students that made semantic errors on the
problem

Note. #: The number of. %: The percentage of. Engineering: features are engineered. Features
marked in gray would be weighted if weighting schemes were used.

2.3. WEIGHTING SCHEMES

The proposed weighting schemes are designed to adjust the contribution of students’
interaction with each of the 30 early problems to the performance prediction on each of the 20
later problems. Three weighting schemes were based on similarity, and each corresponded to
one of Pelánek’s (2020) three input data types: item statement (problem prompt in this study),
item solutions (source code in this study), and problem performance (struggling in this study).
The fourth weighting scheme was based on problem order. In this section, we first provide
information about how weights were applied when computing the value of each feature. Then,
we present the specifics of each weighting scheme used in this study.

72 Journal of Educational Data Mining, Volume 15, No 1, 2023

2.3.1. Application of weights

Here we present the way in which weights are applied when computing features. Figure 1
illustrates the hierarchical levels of features and where we used the weights. Features at the
submission level (denoted as S, e.g., the number of syntax errors a submission contains) were
aggregated to features at the early problem level (denoted as EP, e.g., the number of syntax
errors that a student made on a certain early problem), which were further aggregated to
features at the student-late problem level (denoted as LP, e.g., the average number of syntax
errors that a student made on early problems). LPm represents the value of a LP feature that is
used in predicting performance on later problem m. Weights are used in the aggregation from
EP features to LP features, as illustrated by equation (1):

𝐿𝑃! =
1
𝑁&𝑤"!𝐸𝑃"

#

"$%

 (1)

N is the number of early problems that a student attempted. 𝑤"! is the normalized weight of
early problem n for late problem m, and ∑ 𝑤"!#

"$% = 𝑁. 𝐸𝑃" is the feature value on early
problem n. If the aggregation is summing, %

#
 needs to be removed from equation (1). Not using

weights is a special case of equation (1), where 𝑤"! is always 1 regardless of n and m.
Consequently, 𝐿𝑃% = 𝐿𝑃& = ⋯ = 𝐿𝑃&'.

Figure 1: The hierarchical levels of features and where weights are used.

As an example, we will focus on the feature proportion of problems that a student
struggled with to predict performance on late problem 43. Table 4 shows three students’
responses to five early problems. Students A and B struggled with three problems, and their
unweighted features were 0.6. However, B’s weighted feature was almost twice A’s weighted
feature. This is because A struggled with problem 1, which had a low similarity with problem
43 and a small weight, and B struggled with problem 3, which had a high similarity with
problem 43 and a large weight. Similarly, student C struggled with two problems, but C’s
weighted feature was larger than A’s because C struggled with problems 3 and 13, both of
which had large weights.

Alternatively, features at the submission level can be directly aggregated to the student-late
problem level. In such cases, weights are used via equation (2).

L𝑃! =
1
𝑇&-𝑤"!∗ &𝑆")

*!

)$%

/
#

"$%

 (2)

73 Journal of Educational Data Mining, Volume 15, No 1, 2023

 Table 4: Three students’ unweighted and weighted features for predicting performance on late
problem 43.

Student
Early problem n 1 3 5 12 13

LP43 Similarity 0.02 0.51 0.31 0.22 0.32
Weight wn43 0.07 1.86 1.14 0.79 1.14

A
Original response EPn 1 0 1 1 0 0.60
Weighted 0.07 0.00 1.14 0.79 0.00 0.40

B
Original response EPn 0 1 1 0 1 0.60
Weighted 0.00 1.86 1.14 0.00 1.14 0.83

C
Original response EPn 0 1 0 0 1 0.40
Weighted 0.00 1.86 0.00 0.00 1.14 0.60

Note. Original response: 1 represents struggling, and 0 represents success.

Tn is the number of submissions on early problem n. 𝑇 is the total submissions on all early
problems, i.e., ∑ 𝑇"#

"$% . 𝑆") is the feature of submission t on early problem n. 𝑤"!∗ is the
normalized weight of submissions on early problem n for late problem m and ∑ 𝑇"𝑤"!∗#

"$% =
𝑇. It is derived by normalizing 𝑤"!:

𝑤"!∗ =
𝑇

∑ 𝑇"𝑤"!#
"$%

𝑤"! (3)

With equation (3), submissions on the same early problem have the same weight for a late
problem, but submissions on different early problems have different weights. Moreover, the
ratio of the weight of a submission on early problem P to that on early problem Q is +"#

+$#
 for

late problem m, which is the same as the ratio of the weight of early problem P to early
problem Q.

Equation (2) is suitable for features that require many submissions to generate reliable
values. For instance, obtaining a reliable measurement of transition strength between code
states may require 50 or more submissions (Bosch and Paquette, 2021), but in most cases, a
student made far less than 50 submissions on a single problem. Thus, computing the transition
strength between code states at the early-problem level would be improper, while using
equation (2) to compute transition strength directly is more appropriate. All debugging-related
features were weighted using equation (2), and the others were weighted using equation (1).

2.3.2. Weighting by source code similarity

In this weighting scheme, the weights were based on the similarity between two problems
based on the source code of submissions on these problems. We used code2vec (Alon et al.,
2019) to convert students’ code to embeddings that retained some of the semantic properties of
the code. We then used the similarities between the average embeddings as weights.

Code2vec emulates the success of distributed vectors of words (such as word2vec) in
natural language processing (NLP) tasks but uses an approach that retains the semantic
properties of code. It does this by extracting a series of leaf-to-leaf paths from an abstract
syntax tree (AST) representation of the code and then using these paths as inputs in an
artificial neural network (ANN) designed to predict method names in the code. Once the
model is trained, it can be used to convert any code snippet into a vector embedding
representation. Code2vec has previously been used in CS education research, including to

74 Journal of Educational Data Mining, Volume 15, No 1, 2023

profile students based on their code (Azcona et al., 2019), to discover student misconceptions
(Shi et al., 2021), and to automatically detect bugs in student code (Shi et al., 2021).

To calculate these weights, we first identified a single submission from each student-
problem pair to convert to a code embedding. If a student successfully solved the problem, we
used the code from their final correct submission. Otherwise, we used their final submission
which had no compiler errors. The latter requirement is because we could not extract an AST
from uncompilable code, making it also impossible to convert it to an embedding. We then ran
the code snippets from each of these selected submissions through code2vec, converting the
code to an AST, extracting paths from the AST, then using the path as input for the neural
network trained to predict method names, and finally extracting the embedding used by the
neural net in its prediction task. We used the exact neural network configuration described by
Alon et al. (2019). The network was trained for eight epochs on 14 million examples of Java
code snippets found on public GitHub repositories.

Once we had all code embeddings for our training data, we calculated the similarities
between them in three different ways: inverse Euclidean distance, cosine similarity, and
Pearson’s correlation. We measured the inverse Euclidean distance between embeddings using

%

,∑ (/0%100%)&!
%'(

 where 𝐿𝐸3 and 𝐸𝐸3 are the i-th element in the late problem embedding and in

the early problem embedding, respectively. We calculated the cosine similarity between
embeddings using /0⋅00

‖/0‖‖00‖
 where ‖𝐿𝐸‖ is the magnitude or Euclidean norm of the late

embedding vector—that is, 1∑ 𝐿𝐸3&"
3$% .

We reasoned that exploring multiple operationalizations of vector similarity would allow us
to identify the better option, based on the nature of the embeddings themselves. For example,
cosine similarity—which is the typical way of measuring similarities between word2vec
vectors—only considers the angle between vectors and works best when the magnitude of a
vector is not important. Euclidean distance, on the other hand, is quite intuitive as it measures
actual distance, but these distances (and, for our purposes, weights) can become insignificant
if the angle between vectors is very small. However, the current study did not find a difference
between the three measures. This was in line with prior studies that found that the choice of
similarity measures had relatively less impact than the choice of input data (Cechák and
Pelánek, 2021; Pelánek et al., 2018). Thus, the result section only reports cosine similarity.
The appendix presents the results of Euclidean distance and Pearson correlation.

2.3.3. Weighting by problem prompt similarity

An alternative way to identify similarities between problems is to compare the language in the
problem prompts (Pelánek, 2020). To do this, we extracted a document embedding for each
prompt using doc2vec (Le and Mikolov, 2014). Doc2vec builds on word2vec by adding an
additional document vector that allows the model to create a document embedding (as
opposed to a word embedding) that aims to capture the semantic concepts that make up the
document. We made use of the doc2vec implementation found in the Gensim library for
Python (Rehurek and Sojka, 2010).

The specific process we used to calculate weights began by tokenizing the problem prompts
and removing typical stop words. We then trained a doc2vec model with tagged problem
prompts over 120 epochs. We used this model to convert the text of each problem prompt into
a 50-element document vector. Finally, we calculated the similarity between each late problem

75 Journal of Educational Data Mining, Volume 15, No 1, 2023

prompt and each early problem prompt using the same three measures of difference as with
the code embeddings—inverse Euclidean distance, cosine similarity, and Pearson’s
correlation. Again, there was no difference among the three measures in prediction
performance. Thus, the result section only reports cosine similarity, and the appendix presents
the results of the others.

2.3.4. Weighting by struggling similarity

The current weighting scheme used the correlation between the students’ performance in two
problems as the similarity metric. The rationale is if the knowledge and skills involved in two
problems are related, a student performing well on one problem is likely to perform well on
another. Thus, the correlation between students' performance in the two problems should be
stronger than the correlation between two problems involving unrelated knowledge and skills.
Performance in a problem can be measured using various indicators—for example, whether a
student struggled with the problem, whether they made syntax errors in the problem, how
many syntax errors they made in the problem, etc. Multiple performance indicators can be
used to compute multiple similarity metrics, which could be used to weight different features.
For instance, the similarity in struggling could be used to weight the proportion of problems a
student struggled with, while the similarity in syntax errors could be used to weight the
proportion of problems on which students made syntax errors. The current study only used the
similarity in struggling, given that the goal of the task is predicting whether a student will
struggle with a problem or not.

Struggling with a problem is a binary feature, so contingency table correlation is used.
Specifically, we used the log-odds ratio because it ranges from -∞ to +∞ and approximates a
normal distribution (Dagne et al., 2002), making it suitable for statistical analysis. Thus, the
similarity between early problem n and late problem m is their log-odds ratio, which is

𝑙𝑛
678(&9/6;8

(
&9	

6=8(&9/6>8
(
&9

. ln is the natural logarithm, and Table 5 explains a, b, c, and d. For example, a

is the number of students struggling with both problems. ½ is used to reduce the bias in the

log-odds ratio estimate (Dagne et al., 2002).
678(&9

6;8(&9
 is the odds of struggling with late problem

m in students struggling with early problem n, while
6=8(&9

6>8(&9
 is the odds of struggling with late

problem m in students succeeding on earl problem n. A log-odds ratio of zero means that the
odds of struggling with late problem m were independent of struggling with early problem n or
not. A log-odds ratio larger than one means a positive correlation, while A log-odds ratio
lower than one means a negative correlation.

Table 5: Contingency table of struggling in two problems.

 Problem m
Problem n Struggling Success

Struggling a b
Success c d

 Among the 600 early-later problem pairs, 46 had negative log-odds ratios. A negative log-

odds ratio indicates that students who struggled with the early problem were less likely to

76 Journal of Educational Data Mining, Volume 15, No 1, 2023

struggle with the later problem. Forty-four negative log-odds ratios were small in terms of
magnitude (> -0.4), indicating weak associations (Rosenthal, 1996). Such weak negative
associations might occur due to randomness. Thus, if early problem n and late problem m had
a negative log-odds ratio, we replaced the negative value with the minimum positive log-odds
ratio of early problem n. This processing assumed that the interaction with any problem did
not contribute to learning negatively, analogous to the assumption in Zhao et al. (2020) that no
learning material was negatively related to a concept. The largest two negative log-odds ratios
were both from the first early problem (ID 1), with later problems 51 (-0.41) and 64 (-0.55),
respectively. This early problem had a negative log-odds ratio with 13 of the 20 later
problems. Investigating the cause of negative log-odds ratios is beyond the scope of this paper,
but it may be worth future studies.

2.3.5. Weighting by problem order

Unlike previous weighting schemes that address the lack of knowledge components, the
current scheme aims to account for the decay impact of past problems (Gong et al., 2011). The
decay impact assumes that behaviors and performance on a recent problem are more important
than that on an earlier problem in predicting performance on a future problem. For example,
compared with students’ performance in the earlier part of the 30 early problems, e.g., the first
five problems, their performance in the latter part of the 30 early problems, e.g., the last five
problems, might more accurately represent their knowledge and skills when they were
attempting the 20 later problems. Thus, we assigned lower weights to the earlier parts of the
30 early problems and higher weights to the latter parts. The reason behind the decay impact
might be various. It might be that students’ programming knowledge and skills grew during
the period of the 30 early problems, which was one month, perhaps a significant amount of
time for novice CS students. Meanwhile, students might forget the knowledge learned weeks
ago. Also, compared to the earlier part of the 30 early problems, the latter part might involve
content more similar to the 20 later problems.

For the early problems attempted by a student, we sorted these problems by the timestamp
of the student’s first submission on each problem. Then, the first problem was assigned a
weight of 1, the second problem a weight of 2, and so on until the last problem, which was
assigned a weight equal to the number of early problems attempted. Through this weight
assignment, we hope to partially account for the learning in programming knowledge that
occurs over time.

The weights can be assigned in different ways. For instance, the first problem may have a
weight of 2, the second problem may have a weight of 3, and so on. In this weight assigning, if
a student attempted all 30 early problems, the ratio of the first problem’s weight to the last
problem’s is 2/31. By contrast, based on the weight assignment that we used, the ratio is 1/30,
almost half of 2/31. Thus, our weight assignment implied a stronger decay in the impact of
past problems. It is challenging to predetermine which weight assignment method works best,
analogous to hyperparameters in ML. Similarly, the best weight assignment may be
determined by cross-validation (CV). Indeed, we experimented with a few ways of assigning
weights, where the ratio of the first problem’s weight to the last problem’s ranged from 1/60 to
1/3. The ratio of 1/30 worked best in terms of the average CV AUC in the training data,
though the differences were small (~0.001 AUC).

77 Journal of Educational Data Mining, Volume 15, No 1, 2023

2.3.6. Normalizing weights and combining different weighting schemes

Weights derived from the above computation are unnormalized, denoted by 𝑤"!? . 𝑤"!? cannot
be used to weight features directly because it may cause unreasonable values in weighted
features. For example, for the proportion of problems that a student struggled with, using 𝑤"!?
may result in a weighted proportion beyond 100%. Equation (4) normalizes 𝑤"!? :

𝑤"! =
𝑁 ∗ 𝑤"!?

∑ 𝑤"!?#
"$%

 (4)

Different weighting schemes can be used together. When multiple weighting schemes are
used, we take the mean of their normalized values as the final weight:

𝑤"! =
1
𝑆&𝑤@"!

A

@$%

 (5)

𝑤@"! is the weight of early problem n for late problem m in weighting scheme s. S is the
number of weighting schemes used. Note that taking the mean of different weighting schemes
might not be a good choice because weighting schemes that were not useful might damage the
performance of the average weighting. We return to this point in Section 4.2.

2.4. MODEL BUILDING

This study investigated the effectiveness of the weighting schemes in two analyses. The first
analysis compared different weighting schemes to investigate to what extent the weighting
could improve predictive performance and which weighting scheme performed better. The
second analysis compared the weighting schemes with the SOTA learner modeling methods to
investigate whether using problem similarity and order in a simple way could achieve the
same predictive performance. Both analyses were conducted for cross- and within-semester
prediction. Note that all weights were learned only from the training dataset. More
specifically, the weights in cross-semester prediction were from Spring sample one as this is
the training dataset in this phase. Similarly, the weights in within-semester prediction were
from Spring samples one and two as well as the Fall training dataset. The evaluation metric
was AUC because it was the criterion of the CSEDM data challenge.

2.4.1. Comparing different weighting schemes

We used three machine learning models: extreme gradient boosting (through the XGBoost
Python library), random forest (through the Scikit-learn Python library), and lasso logistic
regression (also through the Scikit-learn library). We used a 5-fold CV within the training
dataset and grid search to tune the hyperparameters. CV was conducted at the student level,
i.e., different folds contained different students. We first tuned the hyperparameters in the
models with unweighted features, and then we applied the tuned hyperparameters to the
models with weighted features. Table A-2 in the Appendix displays these hyperparameters.

We first compared the performance of models with and without weighting schemes with all
features in Table 3. Because engineering all these features was effortful, we investigated the
difference between models with and without weighting schemes when fewer features were
used. We varied the number of features from five to all features. The features were selected
based on their importance in the model with all features calculated on the training dataset. For
example, when the number of features was five, the most important five features in a model

78 Journal of Educational Data Mining, Volume 15, No 1, 2023

were used. Feature selection was implemented via the SelectFromModel function of the
Scikit-learn Python library.

We reported the five most important features in the best models (random forest classifier
for cross-semester prediction and lasso logistic regression for within-semester prediction) in
the condition of all features. For the random forest classifier, the Gini importance was used,
and for lasso logistic regression, the standardized coefficients were used. Because some
features were highly correlated (e.g., Pearson correlations were around 0.90), we also ranked
the importance of a feature based on the AUC of the one-feature model, which only used this
feature. The AUC was evaluated via a 5-fold CV in the training dataset, and the average value
was used as the importance measure.

2.4.2. Comparing weighting schemes with DLKT and IRT

We chose DLKT and IRT models as our baselines. We selected DLKT because they are
SOTA and use problem similarity and order implicitly. We chose IRT models because they
account for problem difficulty explicitly and inspired our student-problem interaction features.
For our approach, we decided to use only two features that could be computed based on
response correctness and problem ID sequences: the proportion of problems that a student
struggled with and the proportion of students that struggled with the problem (#6 and #24 in
Table 3). We chose the two features because they could be computed only using response
correctness and problem ID sequences, which is the information used by the baselines (DLKT
and IRT). Thus, with the two features, our approach used the same information for prediction
as the baselines, and the comparison between our approach and the baselines might be fairer
than using all features listed in Table 3. It is noteworthy that using many features may cause
overfitting issues and damage the performance of a model (see Figure 3). Thus, to some
extent, using only two features might give our approach an advantage.

The number of combinations of ML models plus weighting schemes was 24 (three ML
models * eight weighting approaches; see Figure 2). Comparing all combinations to the
baselines might inflate the performance of our approach. Thus, we selected the combination
with the best average AUC across a 5-fold CV in the training dataset. The best combination
was the lasso logistic regression with struggling similarity weighting in both cross- and
within-semester prediction. We compared this combination with the baselines in the test
dataset.

DLKT. We used three DLKT models as baselines. We used the LSTM implementation of
DKT (Piech et al., 2015) since it was the first DLKT model published and serves as a good
starting point for comparison. We also used two self-attention-based models, SAKT (Pandey
& Karypis, 2019) and SAINT (Choi et al., 2020). The latter is the SOTA model on the official
EdNet (Choi et al., 2020) leaderboard as of this writing, though its successor, SAINT+ (Shin
et al., 2021), has reportedly performed marginally better. We wrote our LSTM-DKT
implementation using Keras and TensorFlow and used publicly available open-source
implementations of SAKT3 and SAINT4 written using PyTorch. All three DLKT models used

3 https://github.com/hcnoh/knowledge-tracing-collection-pytorch/blob/main/models/sakt.py
4 https://github.com/Nino-SEGALA/SAINT-pytorch

79 Journal of Educational Data Mining, Volume 15, No 1, 2023

problem ID and correctness as inputs. We tuned the hyperparameters by training the model on
80% of the training data and validating it on the other 20%.

IRT models. We used the two-parameter logistic model (2PL), which accounts for problem
difficulty and discrimination explicitly (Embretson and Reise, 2000). We did not use the
Rasch model because we did not think that the programming problems had the same
discriminative power. Moreover, in the multidimensional context, to some extent, it is through
the discrimination coefficients that the 2PL model utilizes problem relations. Indeed, the
Rasch model performed worse than the 2PL model in terms of both model fit and AUC in the
training dataset. We implemented one- and two-dimensional 2PLs via the mirt package
(Chalmers, 2012) in R. The problem structure of the two-dimensional model was determined
based on the factor loading pattern generated by principal factor analysis with promax
rotation. We regarded a problem related to a latent dimension when its loading on this
dimension was larger than 0.2. A problem might be related to both dimensions. The problem-
dimension relations were reported in Table A-2 of the Appendix.

3. RESULTS

3.1. COMPARING DIFFERENT WEIGHTING SCHEMES

Figure 2 depicts the test AUC of different weighting schemes when all features were used.
Table A-2 in the appendix displays the exact values of train and test AUC. The value of the
best test AUC per training dataset per ML model is displayed. Models with source code
similarity weighting improved test AUC, compared to no feature weighting, in 5 out of 6
conditions (except for the condition of cross-semester prediction with random forest
classifier). However, the magnitude of improvement is small, between 0.001 and 0.005.
Problem prompt similarity weighting consistently reduced test AUC (0.003 to 0.009),
compared to no weighting.

Problem order weighting improved the test AUC better than source code similarity
weighting, except for the condition of cross-semester prediction with lasso logistic
regressions. Compared with models without weighting, models with problem order weighting
improved test AUC by 0.003 to 0.009. Struggling similarity weighting achieved better
improvement, with a magnitude of 0.006 to 0.015. In both cross-semester and within-semester
predictions, the model with the best AUC used struggling similarity weighting. For cross-
semester prediction, random forest with struggling similarity weighting plus problem order
weighting achieved the best test AUC (0.793). For within-semester prediction, lasso logistic
regression with struggling similarity weighting achieved the best test AUC (0.797). In
summary, source code similarity, struggling similarity, and problem order weighting improved
model performance consistently but by a relatively small amount (≤ 0.015 AUC).

Problem order weighting aims to account for continued learning, while other weighting
schemes aim to account for problem similarities. We investigated whether combining them
could improve the prediction. The combination of problem order weighting and one of the
problem similarity weighting schemes did improve the test AUC in some conditions, but the
improvement was relatively small. For example, random forest with struggling similarity
weighting plus problem order weighting achieved the best test AUC in cross-semester
prediction, but only 0.0004 higher than random forest with only struggling similarity
weighting. Combining all weighting schemes did not improve the test AUC. Table A-3 reports

80 Journal of Educational Data Mining, Volume 15, No 1, 2023

the other combinations. Overall, combining weighting schemes did not improve the
performance.

Figure 2. The test AUC of various weighting schemes.

Note. Cross-semester: training data contained spring sample one. Within-semester: training
data contained spring samples one and two as well as the fall training sample. XGB: extreme
gradient boosting.

3.1.1. The comparison under various numbers of features

Figure 3 displays the test AUC under various numbers of features (values smaller than 0.76
were not displayed for clarity). The relative performance of various weighting schemes in the
condition of not all features was similar to that of all features. In most conditions, problem
prompt similarity weighting showed lower test AUC than no weighting, and source code
similarity weighting improved the test AUC slightly. Problem order weighting improved the

0.772

0.793

0.787

0.797

0.794

0.792

Cross-semester Within-semester

Lasso
R

andom
 forest

X
G

B

0.76 0.77 0.78 0.79 0.80 0.76 0.77 0.78 0.79 0.80

all
order + prompt

order + code
order + struggling

prompt
code

struggling
order

no weighting

all
order + prompt

order + code
order + struggling

prompt
code

struggling
order

no weighting

all
order + prompt

order + code
order + struggling

prompt
code

struggling
order

no weighting

AUC

81 Journal of Educational Data Mining, Volume 15, No 1, 2023

test AUC better than source code similarity weighting, and struggling weighting or its
combination with problem order weighting improved the AUC the best. An exception
occurred at the condition of lasso logistic regression for cross-semester prediction, where
struggling weighting and its combination with problem order weighting performed much
better than source code similarity weighting in the condition of five features. As the number of
features increased, source code similarity weighting overtook these weighting schemes. In
summary, source code similarity, struggling similarity, and problem order weighting improved
model performance consistently regardless of the number of features, but the improvement
decreased as the number of features increased.

A noticeable pattern was that the difference between models without weighting and with
struggling (or struggling + order) weighting was the largest in the condition of five features,
and it generally decreased as the number of features increased. Particularly, as the number of
features increased from five to ten, the test AUC of the model without weighting increased
greatly (0.009 ~ 0.042), but that of the model with the best weighting increased little (e.g.,
0.000 ~ 0.005 for struggling weighting). Further analysis found that it was the change in the
proportion of problems that a student struggled with from the first to the third assignment (for
simplicity, we refer to it as the struggling change) that contributed to the improvement of the
model without weighting. After including this feature, the test AUC increased 0.007 ~ 0.035 in
the model without weighting but hardly changed in the model with weighting (e.g., 0.000 ~
0.002 for struggling weighting).

Note that the struggling change was not weighted even when weighting was used. We
compared its correlations with the other features between the conditions of struggling
weighting and no weighting. From no weighting to struggling weighting, the average absolute
correlation between the struggling change and features that would be weighted if using
weighting increased from 0.16 to 0.21. Particularly, its correlation increased from 0.21 to 0.51
with the proportion of problems that a student struggled with, from 0.41 to 0.57 with the
proportion of problems on which a student made semantic errors, and from 0.39 to 0.53 with
the average number of unique test scores on a problem. The three features were some of the
most important features (see Table 6) and included by the model when using only five
features. Overall, this suggests that the struggling change contained useful information for
prediction. However, when struggling weighting was used, the importance of this feature
decreased because the weighting made its useful information contained by the other features.

The struggling weighting added information about problem struggling similarity to the
other features. Was this information contained by the struggling change from the first to the
third assignment? The differences in the two assignments’ similarity to the 20 later problems
answer this question. The average similarity between the ten problems in the first assignment
and the 20 later problems was 0.40 log-odds ratios, but the average similarity was 1.27 log-
odds ratios between the ten problems in the third assignment and the 20 later problems. In
terms of normalized weights, the average of the problems in the first assignment was 0.50, but
the average of the problems in the third assignment was 1.50. Thus, the struggling change
from the first to the third assignment would be reflected in the weighted features. For instance,
a student that struggled with a few problems in the first assignment but many problems in the
third assignment would have a high weighted proportion of struggling problems because the
weights of the third assignment were, on average, three times that of the first assignment. In
summary, the particularity of problem arrangement caused that the arrangement captured
information about problem struggling similarity. This also explains why the problem order
weighting showed similar performance to the problem struggling weighting in many situations
(see the second and third rows of Figure 3).

82 Journal of Educational Data Mining, Volume 15, No 1, 2023

Figure 3: The test AUC changed as the number of features increased.

Note. Values smaller than 0.76 were not displayed for clarity.

Cross-semester Within-semester

Lasso
R

andom
 forest

X
G

B

5 10 20 30 40 50 60 65 5 10 20 30 40 50 60 65

0.76

0.77

0.78

0.79

0.80

0.76

0.77

0.78

0.79

0.80

0.76

0.77

0.78

0.79

0.80

Number of features

AU
C

Weighting
no weighting
order
struggling

code
prompt
order + struggling

order + code
order + prompt
all

83 Journal of Educational Data Mining, Volume 15, No 1, 2023

3.1.2. The most important features

Table 6 lists the five most important features in the best models with all features for cross- and
within-semester predictions. For the within-semester prediction, the rank based on AUC and
standardized coefficients were different, and the top five features based on either measure
were reported. The interaction between the percentage of problems that a student struggled
with (representing students’ ability) and the percentage of students struggling with the
problem (representing problem difficulty) was the most important feature, regardless of the
importance measure and the prediction task (cross- versus within-semester).

The percentage of problems that a student struggled with, whether a student solved
problems on the first submission, the percentage of problems on which a student made
semantic errors, and its interaction with the percentage of students making errors on the
problem were present in the top five features in terms of AUC in cross- and within-semester
predictions. The Gini importance rankings were the same as AUC, but the standardized
coefficients differed from AUC. Based on the standardized coefficients, the average number of
unique test scores and the median number of submissions were present in the top five. The
percentage of problems on which a student made semantic errors and its interaction with the
percentage of students making semantic errors on the problem had a low rank, perhaps
because of their high correlation with the average number of unique test scores (Pearson
correlations = 0.86 and -0.79, respectively).

Note that for within-semester prediction, the percentage of problems that a student
struggled with and the median number of submissions on a problem had positive coefficients,
which is counterintuitive. We provide an explanation in the appendix.

Table 6: Top five features in the best model of cross- and within-semester predictions.

Cross-semester: random forest classifier AUC (rank) Gini importance
(rank)

(1 - % problems that a student struggled with) - %
students that struggled with the problem 0.777 (1) 0.145 (1)

% problems that a student struggled with 0.762 (2) 0.095 (2)
(1 - % problems on which a student made semantic
errors) - % students that made semantic errors on the
problem

0.759 (3) 0.079 (3)

% problems on which a student made semantic errors 0.750 (4) 0.064 (4)
% problems that a student solved on the first
submission 0.739 (5) 0.053 (5)

Within-semester: Lasso logistic regression AUC (rank) Standardized
coefficients (rank)

(1 - % problems that a student struggled with) - %
students that struggled with the problem 0.767 (1) 0.747 (1)

% problems that a student struggled with 0.761 (2) 0.220 (5)
% problems on which a student made semantic errors 0.753 (3) 0.000 (64)
(1 - % problems on which a student made semantic
errors) - % students that made semantic errors on the
problem

0.751 (4) 0.092 (21)

84 Journal of Educational Data Mining, Volume 15, No 1, 2023

Cross-semester: random forest classifier AUC (rank) Gini importance
(rank)

% problems that a student solved on the first
submission 0.747 (5) 0.264 (4)

Average number of unique test scores on a problem
(an approximation to average number of semantic
errors on a problem)

0.736 (6) -0.311 (2)

Median number of submissions on a problem 0.716 (10) 0.276 (3)
Note. The true value of the label means that a student did not struggle with a problem. AUC
was the one-feature model AUC.

3.2. COMPARING THE WEIGHTING SCHEME WITH DLKT AND IRT

Table 7 shows the test AUC of lasso logistic regression with and without struggling weighting,
along with DLKT and IRT models. Recall that this lasso model only used two features: the
proportion of problems that a student struggled with and the proportion of students that
struggled with the problem. The lasso with unweighted features showed the lowest test AUC
in both cross- and within-semester predictions. With weighted features, the test AUC
increased 0.034 and 0.038. In the cross-semester prediction, the lasso with weighted features
performed slightly better than DLKT models, with differences in AUC ranging from 0.009 to
0.017. In the within-semester prediction, the lasso with weighted features performed almost
the same as DKT and SAKT and slightly better than SAINT. In both predictions, the lasso
with weighted features performed better than IRT models, with differences in AUC ranging
from 0.024 to 0.036.

Table 7: The test AUC of models with just problem correctness and ID sequences.

Phase No
weighting a Weighting b DKT SAKT SAINT 1D

IRT
2D

IRT
Cross-semester 0.744 0.778 0.767 0.761 0.769 0.754 0.751
Within-semester 0.746 0.784 0.785 0.782 0.778 0.760 0.748

Note. a: The models in both phases were lasso logistic regression. b: The models in both
phases were lasso logistic regression with struggling similarity weighting. These models were
chosen based on the average AUC of 5-fold CV in the training data. 1D and 2D IRT: one- and
two-dimensional IRT models.

4. DISCUSSION
This study utilized problem similarity and attempt order information to weight behaviors and
performance on past problems in the performance prediction on future problems. The main
findings are: (1) the source code similarity, struggling similarity, and problem order weighting
improved prediction performance consistently regardless of the number of features, but the
improvement decreased as the number of features increased; (2) the prompt similarity
weighting did not improve prediction performance; (3) combining weighting schemes by
taking the average did not improve prediction performance; (4) using the same information,

85 Journal of Educational Data Mining, Volume 15, No 1, 2023

the struggling similarity weighting made the lasso logistic regression have performance
comparable to the SOTA deep learning models.

When only using two features about response correctness and problem difficulties, the
model with weighted features showed a test AUC of 0.034 to 0.038 higher than the model with
unweighted features, although the differences decreased as the number of features increased.
Weighted features generally performed better because the similarity weighting treated past
problems differentially according to their relations to future problems, and the problem order
weighting made the features capture temporal information of interactions or possible learning.
The problem relations and temporal order of interactions are two types of statistical
regularities that DLKT can exploit but the methods operating on tabular data have difficulty
using (Gervet et al., 2020). To some extent, the weighting schemes helped the latter methods
to access the two types of statistical regularities.

For within-semester prediction, our weighting approach performed almost the same as
DLKT, which also utilized problem similarity and attempt order to weight past problems but
implicitly and in a complex way. However, for cross-semester prediction, our weighting
performed slightly better than DLKT. The reason may be that the training sample in the cross-
semester prediction was just 1/3 of that in the within-semester prediction. This finding is in
line with prior research (Gervet et al., 2020), where DKT performed better than a logistic
regression with features about the number of correct and incorrect attempts, student ability,
and problem difficulty, but only in the condition of large data size. When the data size was
small to medium, the relative performance reversed.

Overall, the results indicate the potential of using problem similarities and problem order as
a tool to weight students’ historical programming behaviors and performance for learner
modeling, especially in situations where KCs are not explicitly defined. The remainder of this
section discusses the implications of our results and suggests future directions to address the
limitations of using problem similarities and order weightings.

4.1. IMPLICATIONS FOR LEARNER MODELING

With information about response correctness and sequences, the proposed weighting scheme
performed better than the model without weighting and IRT models and almost the same as
DLKT. This result suggests that using problem relation and order to weight information on
past problems in a way simpler than DLKT does not dimmish the prediction accuracy.
Moreover, because the computation of the weighting matrix and the process of weighting
features were finished before training models, we could incorporate features more than
response correctness and sequences and weight these features. With these features, the model
with weighting slightly outperformed DLKT (as the best models with all features had an AUC
of 0.793 and 0.797 in the cross- and within-semester prediction). This suggests that the
flexibility of the simple weighting is worth the cost of not optimizing the weighting matrix.
Moreover, computing weighted features is a step of feature engineering and independent of the
ML models, so our weighting approaches can be used along with ML models simpler than
deep learning. This means that a learner model based on our weighting may be more
interpretable but still have accuracy comparable to SOTA deep learning models.

There was not a single weighting scheme that always performed the best, but the top-
performers seemed to be struggling similarity and problem order. The struggling similarity
between two problems was defined as their similarity in student struggling patterns. This was
the performance correlation between the two problems. Computing this performance-based
similarity is simple and does not rely on problem prompts or source code, and thus,

86 Journal of Educational Data Mining, Volume 15, No 1, 2023

performance similarity weighting is applicable to learner modeling for tasks other than
programming problems. Similarly, problem order weighting is also applicable in other
contexts, although its utility may be limited (which we discuss in the next section).

This study found that when the weighting scheme was used, a few simple features (e.g.,
problem difficulty, average student ability) seemed sufficient for prediction performance
comparable to many features. For instance, when the struggling similarity weighting was used
in the within-semester prediction, the test AUC in the condition of five features was close to
that of ten or more features, with a difference smaller than 0.005. Note the small difference
was not because the added features were not useful. Indeed, when the weighting was not used,
the test AUC increased by 0.009 ~ 0.042 as the number of features increased from five to ten.
Overall, these findings suggest that the weighting scheme allows a simple model to perform
well.

A related finding is that the improvement of the weighting scheme diminished as the
feature set became larger. This suggests that the weighting schemes may be most useful for
getting more information from a smaller set of features and less beneficial when a
comprehensive set of features is available.

Based on past programming process studies, we engineered a set of features related to
programming errors, behaviors, and debugging. Prior studies that compared features did not
test the generalizability using a train-test split or CV and compared limited features (e.g.,
Carter et al., 2015; Tabanao et al., 2011). Thus, to some extent, this study provided new
information about the relative importance of these features in predicting performance. The
features related to semantic errors were the most important, followed by features related to
syntax errors. For instance, the proportion of problems on which a student made semantic
errors had a test AUC higher than the proportion of problems on which a student made
syntactic errors (0.753 versus 0.722 in within-semester prediction; 0.750 versus 0.706 in cross-
semester prediction). This result is in line with prior research (Fitzgerald et al., 2008) and
suggests that novice programmers’ struggle with semantic errors may be more critical in
predicting future performance than the struggle with syntactic errors. Overall, the results
suggest the importance of information about programming errors in programming
performance prediction.

Debugging features were also useful but strongly correlated to error-related features.
Interestingly, transition strength between code states showed higher predictive power than the
rate of fixing syntactic errors or increasing test scores. For example, the transition from a code
state with syntactic errors to a state with test errors had a test AUC higher than the rate of
fixing syntactic errors (0.688 versus 0.521 in within-semester prediction; 0.670 versus 0.569 in
cross-semester prediction). The result suggests that transition strengths among code states may
better indicate novices’ debugging skills.

Cechák and Pelánek (2021) suggest that reliable performance-based similarity measures
may need 2000 answers per problem. The answers per problem in the current study were no
more than 247 in the cross-semester prediction and 740 in the within-semester prediction,
much lower than 2000. The finding that the struggling similarity measure performed better
than the other similarity measures seemingly conflicts with Cechák and Pelánek’s study.
However, the inconsistency is likely because of a difference in the evaluation criterion. In
Cechák and Pelánek’s study, the criterion was the correlation between the performance-based
measure and a problem metadata-based measure, which was used as the ground truth. In our
study, the criterion was prediction accuracy. The finding in the current and Cechák and
Pelánek’s studies together suggests that the utility of a performance-based similarity measure

87 Journal of Educational Data Mining, Volume 15, No 1, 2023

depends on the evaluation criterion. Choosing the problem similarity measure based on the
research context and application purpose is critical.

4.2. LIMITATIONS AND FUTURE STUDIES

One main limitation of the struggling and source code weighting schemes is that the relations
between past and future problems rely on students’ solution or performance data. The problem
prompt weighting does not require such data, but it was not useful in this study. Thus, the
model based on similarity weighting may decrease when predicting performance on new
problems because of missing relations between old and new problems. In this condition, if the
mapping between problems and KCs is available, learner modeling methods that use the
mapping may be a better choice (e.g., BKT and PFA). Nevertheless, the mapping provides
problem metadata, which can also be used to measure problem similarity (Pelánek, 2020).
Specifically, we can derive the Q matrix based on the mapping and compute a pairwise
problem similarity matrix. The utility of a weighting scheme based on this similarity matrix
entails future investigation.

Another limitation of the struggling weighting scheme is that it assumes that students’
knowledge changes little between two problems sharing the same KCs. If students learn on
these KCs after one problem, their performance on the two problems may not be strongly
related. This limitation may be mitigated by the normalization step (see Section 2.3.6) because
the normalization assigns final weights based on relative correlation strengths rather than
absolute strengths. Although students are learning, the correlation between a past problem n1
sharing KCs with the future problem may still be stronger than the correlation between another
past problem n2 having no common KC with the future problem. The normalization will
assign a higher weight to problem n1 but a smaller weight to problem n2. Nevertheless, if
problem n1 and the future problem have a long interval, students may learn substantially.
Consequently, problem n1 would have a correlation with the future problem the same as
problem n2.

Our results showed little positive impact from weighting by source code similarity using
code2vec embeddings. The reason may simply be that our assumption that similar problems
would lead to similar students’ solution code is mistaken. Instead, it may be the case that there
are more consistent and measurable similarities between code samples from the same student
or among students with similar coding backgrounds rather than the final solutions to problems
with related programming concepts. It may also be that averaging the embeddings at the
problem level—though analogous to accepted practices in natural language embeddings—has
caused the model to lose valuable information about students’ code submissions. Future
research may consider devising novel ways to aggregate code embeddings.

In addition, the number of elements in each code2vec embedding is 384. Having so many
elements, as well as the unclear meaning of individual elements, makes it difficult to
understand why the source code of two problems is similar or dissimilar. Even if the similarity
weighting based on code2vec embeddings could improve prediction, interpretation of problem
similarity may be challenging. Thus, future work may consider computing source code
similarity based on techniques that can effectively represent source code with a few
interpretable features, such as JavaParser (Hosseini and Brusilovsky, 2013).

Finally, we chose to use a pre-trained code2vec model rather than training or fine-tuning on
our own data. Our assumption was that the embeddings obtained from such a model would
carry relevant information for our purposes, but future work may consider fine-tuning the
model to potentially obtain more meaningful embeddings for predicting correctness.

88 Journal of Educational Data Mining, Volume 15, No 1, 2023

We also found that weighting by prompt similarity led to worse prediction accuracy than
not weighting at all. After investigating the text of the problem prompts themselves, this is not
very surprising. Each prompt consisted of a short paragraph describing the task, with an
average length of 53 words and a range of 13–103 words. The entire vocabulary set was,
therefore, very limited. Also, some structural patterns within the prompts may have led to
misleading similarity scores. For example, 15 of the 50 prompts began with “Write a function
in Java that implements the following logic,” though without seeming conceptual similarity
between them, and only one of which was in the 20 later problems. It would be beneficial to
examine the results of prompt similarity weighting when using a system that has longer, more
elaborate prompts.

The method of quantifying problem similarity is flexible, but the flexibility comes at the
cost of too many decisions to make. Researchers need to decide which problem properties
(e.g., problem performance, solutions, prompt) the similarity is about, how to quantify these
properties (e.g., performance as whether a student struggled with the problem versus whether a
student made syntactic errors on the problem), and which similarity measure to use (e.g.,
cosine similarity, Euclidean distance, or Pearson correlation). This study found that weighting
based on struggling similarity worked better than weighting based on the other problem
properties, but the advantage of struggling similarity may be due to its relevance to the label—
whether or not a student struggled with a problem. With a different target label, similarity
weighting based on other characteristics may work better. When calculating similarity
measures for source code and problem prompts, we did not find a clear difference among
cosine similarity, inverse Euclidean distance, and Pearson correlation. However, when the
source code is represented via methods other than code2vec (e.g., JavaParser; Hosseini and
Brusilovsky, 2013) or the problem prompts are longer and more elaborate, differences among
these measures may become clearer. As Pelánek (2020) stated, there is no single answer for
which problem property to use, how to quantify a property, and which similarity measure to
use. Future work may develop tools that use CV to choose the best options automatically and
ease the use of problem similarity weighting in learner modeling.

Weighting by problem order showed a small positive impact. The particular problem
arrangement made the problem order weighting contain information about problem relations.
Thus, it was challenging to determine the reason for the small improvement. The reason might
be because problem order weighting accounted for the decay impact of past problems, or it
contained information about problem relations, or both. Besides, the definition of the CSEDM
competition task might limit the application of this approach to the task. In the competition,
the attempt order on the 20 later problems was kept hidden and unknown for prediction. As
such, it was not possible to use the problem order information on the first problems of the 20
later problems when predicting performance on the subsequent problems. Nevertheless, this
issue may not exist in practice if the prediction is dynamic. Once a student finishes a problem,
their behaviors and performance on this problem can be used to update features to predict
performance on the next problem. Thus, problem order weighing may have a larger potential
in dynamic prediction and may be worth further investigation.

Another limitation of our problem order weighting scheme is that weights are assigned in
the same way across all students (i.e., the first problem has a weight of 1, the second problem
2, etc.). This means that the decay impact of past problems was the same across students,
implying that the learning and forgetting rates in programming knowledge are the same across
students. This assumption is likely incorrect. The learning rate may vary across populations
(Pardos and Heffernan, 2010), such as students with programming experiences versus those
without any experience. It may be interesting to examine whether using different problem

89 Journal of Educational Data Mining, Volume 15, No 1, 2023

order weighting for different populations of students could improve the prediction
performance. If so, researchers may be able to use problem order weighting to answer research
questions in a manner analogous to the way that studies have used BKT to answer research
questions (Beck et al., 2008; Pedro et al., 2013). For example, assume two groups of students
in this study: one received feedback when they finished a problem, and one did not. We may
be able to use problem order weighting to investigate whether the feedback impacts learning.
Specifically, if using different problem order weighting for the two groups could achieve
better prediction performance than using the same problem order weighting, we may infer that
the two groups have different learning rates. Consequently, we would conclude that the
feedback has an impact.

We combined different weighting schemes by averaging them, but this might not be a good
practice because a weighting scheme that did not help (e.g., problem prompt weighting) would
damage the performance of the average. How to combine different weighting needs a
systematic investigation, which is beyond the scope of this study. The best weights of different
weighting schemes in the combination weighting may be discovered through grid-searching
and CV, analogous to the hyperparameters in ML.

4.3. CONCLUDING REMARKS

Knowledge tracing and performance prediction are powerful tools in AIED, but the process of
defining KCs and mapping them to problems is time- and effort-consuming. This paper
proposes a set of non-KC based weighting schemes to improve prediction performance.
Specifically, the weighting schemes adjust the contribution of students’ behaviors and
performance on past problems in predicting performance on future problems. A past
problem’s weight to a future problem is proportional to the two problems’ similarity.
Compared to DLKT and the other performance prediction methods that also use problem
similarity to weight information on past problems, the proposed weighting schemes are more
flexible in capturing problem similarity on various problem properties and weighting various
behaviors and performance information on past problems. We measured the similarity
between two problems in terms of the source code of students’ solutions to the problems,
problem prompts, and students’ struggling patterns. After applying the weighting schemes to
the dataset of the 2nd CSEDM data challenge, we found that similarity weighting based on
struggling patterns and source code increased prediction performance, but similarity weighting
based on problem prompts did not. In addition, another weighting scheme that aimed to
account for the decay impact of past problems also increased prediction performance. While
these weighting schemes did not result in particularly large increases in prediction accuracy,
they allowed a simple, interpretable model such as logistic regression to perform on par with
SOTA deep learning models. Furthermore, the proposed weighting schemes are applicable to
fields beyond computer programming.

5. APPENDIX

5.1. EXPLANATIONS OF FEATURES IN TABLE 3

The average number of unique test scores on a problem. The submission traces did not contain
the exact semantic errors that the source code had. However, if a submission had semantic

90 Journal of Educational Data Mining, Volume 15, No 1, 2023

errors, the test score would be smaller than one. Thus, we used the number of unique test
scores on a problem as an approximation to the number of semantic errors on the problem.

Rates of fixing syntax errors. This feature is the proportion of pairs of successive
submissions where at least one syntax error in the first submission disappeared in the second
submission (among all pairs where the first submission had syntax errors).

Rate of making new syntax errors. This feature is the proportion of pairs of consecutive
submissions where a syntax error did not exist in the first submission but appeared in the
second submission (among all pairs where the first submission had syntax errors).

Rate of improving test scores. This feature is the proportion of pairs of successive
submissions where the test score increased from the first to second submissions (among all
pairs where the first submission had a test score smaller than one).

The average difference in test scores between two consecutive submissions. This feature is
the mean of test score differences between two successive submissions.

Transition strength between code states. We classified each submission into three
categories of code states: containing syntax errors (SE), containing semantic errors (test score
< 1; TE), and correct (CO). We considered six possible transitions among these code states:
SE -> SE, SE -> TE, SE -> CO, TE -> SE, TE -> TE, and TE -> CO. Transitions beginning
with CO are not considered because students rarely made more submissions on a problem after
they solved it. The transition strength is quantified by the log-odds ratio. For example, the log-

odds ratio of SE -> TE is 𝑙𝑛
678(&9/6;8

(
&9

6=8(&9/6>8
(
&9

, where ln is the natural logarithm. Table A1 explains

a, b, c, and d. For example, a is the number of submission pairs where the code states of the
first and second submissions are SE and TE, respectively. ½ is used to reduce the bias in the
log-odds ratio estimate (Dagne et al., 2002).

Table A-1: Contingency table for the transition SE -> TE.

 Second state
First state TE Not TE

SE a b
Not SE c d

The proportion of problems that a student made a submission in less than 15s. Following

prior research (Pinto et al., 2021), we considered a submission that had a gap from the last
submission shorter than 15 seconds as a quick submission. Typically, consecutive quick
submissions may indicate guessing behaviors. In this study, there were quick submissions but
hardly consecutive quick submissions. Thus, we only considered whether the student made at
least one quick submission on a problem. Note that we did not regard a single quick
submission as guessing.

The number of days with at least one submission. Prior research considered the number of
days where a student was active as an indicator of spacing (Yeckehzaare et al., 2022). In this
study, we defined being active as making at least one submission.

The number of lines added, deleted, and modified. A large value in this feature means that
the student tended to change the code a lot in each submission. This feature may be related to
the “code-a-little, test-a-little” approach, which has been recommended for novices
(Baumstark and Orsega, 2016).

91 Journal of Educational Data Mining, Volume 15, No 1, 2023

5.2. MODEL CONFIGURATIONS

Table A-2: The configurations of various models.

Model Hyperparameters
Lasso logistic C=1
Random forest max_depth=5, min_samples_split=10, n_estimators=500
XGB learning_rate = 0.01, max_depth=3, subsample = 0.5, n_estimators = 500
LSTM-DKT batch size = 32, optimizer = adam, learning rate = 0.001, loss function =

binary crossentropy, LSTM layer hidden units = 10, dropout = 0.3,
recurrent dropout = 0.3, training epochs = 50 (+ early stopping), validation
fraction = 0.2

SAKT batch size = 256, optimizer = adam,
loss function = binary crossentropy,
sequence length = 31, total number
of questions = 50, validation
fraction = 0.2

learning rate = 0.001, dimensions of
model (embeddings) = 20, number
of attention heads = 5, dropout =
0.4, training epochs = 100 (+ early
stopping)

SAINT learning rate = 0.0001, dimensions
of model (embeddings, attention,
linear layers) = 50, number of
attention heads = 5, dropout = 0.2,
training epochs = 100 (+ early
stopping), number of encoder layers
= 4, number of decoder layers = 4,
number of unique concept
categories = 1 (because we do not
know the KCs)

2-dimensional
2PL IRT

Problems on the 1st dimension: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
16, 17, 18, 33.
Problems on the 2nd dimension: 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26,
27, 28, 29, 30, 32, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48,
49, 50.

92 Journal of Educational Data Mining, Volume 15, No 1, 2023

5.3. THE TRAIN AND TEST AUC OF VARIOUS WEIGHTING SCHEMES AND
COMBINATIONS

 Table A-3: The train and test AUC of various weighting schemes.

Phase Weighting Lasso Random forest XGB
Train Test Train Test Train Test

Cross-
semester
(spring
sample

one)

No weighting 0.798 0.766 0.839 0.781 0.849 0.779
order 0.798 0.766 0.841 0.79 0.85 0.783
struggling 0.824 0.763 0.86 0.792 0.873 0.786
code 0.798 0.771 0.847 0.783 0.855 0.781
prompt 0.796 0.762 0.845 0.778 0.855 0.77
order + struggling 0.813 0.767 0.856 0.793 0.866 0.787
order + code 0.799 0.767 0.848 0.787 0.855 0.781
order + prompt 0.797 0.765 0.847 0.785 0.858 0.781
struggling + prompt 0.812 0.769 0.855 0.787 0.866 0.784
struggling + code 0.814 0.766 0.854 0.788 0.865 0.781
prompt + code 0.797 0.768 0.845 0.78 0.856 0.778
order + struggling + prompt 0.803 0.772 0.853 0.789 0.861 0.787
order + struggling + code 0.805 0.77 0.853 0.791 0.861 0.786
order + prompt + code 0.797 0.767 0.848 0.788 0.857 0.783
struggling + prompt + code 0.807 0.767 0.852 0.785 0.862 0.784
all 0.801 0.772 0.852 0.79 0.86 0.786

Within-
semester
(Spring
samples
one and
two +
fall

training)

No weighting 0.776 0.782 0.803 0.784 0.811 0.785
order 0.776 0.786 0.804 0.792 0.812 0.788
struggling 0.788 0.797 0.811 0.793 0.818 0.792
code 0.775 0.784 0.802 0.783 0.808 0.785
prompt 0.773 0.777 0.798 0.781 0.805 0.782
order + struggling 0.782 0.794 0.808 0.794 0.815 0.789
order + code 0.776 0.787 0.803 0.789 0.81 0.787
order + prompt 0.774 0.784 0.801 0.787 0.808 0.783
struggling + prompt 0.781 0.79 0.806 0.789 0.815 0.783
struggling + code 0.782 0.793 0.807 0.79 0.814 0.786
prompt + code 0.774 0.781 0.8 0.782 0.808 0.783
order + struggling + prompt 0.778 0.789 0.807 0.791 0.813 0.787
order + struggling + code 0.779 0.791 0.808 0.792 0.814 0.788
order + prompt + code 0.775 0.785 0.804 0.788 0.811 0.785
struggling + prompt + code 0.779 0.788 0.805 0.787 0.813 0.784
all 0.777 0.789 0.807 0.79 0.813 0.787

Note. XGB: extreme gradient boosting. The similarity measure for code and prompt is cosine
similarity.

93 Journal of Educational Data Mining, Volume 15, No 1, 2023

Table A-4: The AUC of similarity weighting based on inverse Euclidean distance and Pearson
correlation.

Phase Weighting Lasso Random
forest XGB

Train Test Train Test Train Test

Cross-
semester
(spring

sample one)

Code inverse Euclidean 0.798 0.768 0.848 0.784 0.854 0.780
Code Pearson correlation 0.798 0.771 0.847 0.782 0.855 0.781

Prompt inverse
Euclidean 0.796 0.766 0.847 0.778 0.856 0.777

Prompt Pearson
correlation 0.796 0.762 0.845 0.776 0.855 0.771

Within-
semester
(spring

samples one
and two+ fall

training)

Code inverse Euclidean 0.776 0.783 0.805 0.784 0.812 0.785
Code Pearson correlation 0.775 0.784 0.802 0.783 0.808 0.784

Prompt inverse
Euclidean 0.775 0.779 0.801 0.782 0.809 0.783

Prompt Pearson
correlation 0.773 0.777 0.799 0.780 0.805 0.781

Note. XGB: extreme gradient boosting. Inverse Euclidean: the similarity measure based on the
inverse Euclidean distance. Pearson correlation: the similarity measure based on inverse
Pearson correlation.

5.4. COUNTERINTUITIVE COEFFICIENTS IN TABLE 6

The percentage of problems that a student struggled with had a positive coefficient in the lasso
logistic regression (0.220), which seems to suggest that a student struggling with earlier
problems was less likely to struggle with later problems. However, the lasso model also
contained the interaction between this feature and the percentage of students struggling with
the problem (the coefficient was 0.747). As such, the coefficient of the percentage of problems
that a student struggled with should not be interpreted on its own. Indeed, if we combine this
feature and its interaction, its coefficient would become -0.527 (= 0.220 - 0.747).

The median number of submissions on a problem also had a counterintuitive positive
coefficient, suggesting that a student with a higher median number of submissions on early
problems was less likely to struggle with later problems. The reason for this counterintuitive
coefficient may be that the median number of submissions adjusts the effects of other features
related to the number of submissions, such as the percentage of problems that a student solved
on the first submission and the average number of submissions on a problem, which had a
negative coefficient (-0.183). Struggling with a problem is based on whether the number of
submissions on the problem was beyond 75% of peers. Thus, the median number of
submissions might also adjust the effect of the percentage of problems that a student struggled
with.

94 Journal of Educational Data Mining, Volume 15, No 1, 2023

REFERENCES
 ALEVEN, V., 2010. Rule-based cognitive modeling for intelligent tutoring systems. In

Advances in Intelligent Tutoring Systems, R. Nkambou, J. Bourdeau, R. Mizoguchi, Eds.
Studies in Computational Intelligence, vol 308, Springer, Berlin, Heidelberg, 33-62.

ALON, U., ZILBERSTEIN, M., LEVY, O., AND YAHAV, E., 2019. Code2vec: Learning distributed
representations of code. Proceedings of the ACM on Programming Languages. 3, POPL,
1-29.

ANDERSON, J. R., CORBETT, A. T., KOEDINGER, K. R., AND PELLETIER, R., 1995. Cognitive
Tutors: Lessons learned. Journal of the Learning Sciences. 4, 2, 167-207.

AZCONA, D., ARORA, P., Hsiao, I., AND SMEATON, A., 2019. User2code2vec: Embeddings for
profiling students based on distributional representations of source code. In Proceedings of
the 9th International Conference on Learning Analytics and Knowledge (LAK 2019).
Association for Computing Machinery, 86-95.

BAUMSTARK, L., AND ORSEGA, M., 2016. Quantifying introductory CS students' iterative
software process by mining version control system repositories. Journal of Computing
Sciences in Colleges 31, 6, 97-104.

BECK, J. E., CHANG, K., MOSTOW, J., AND CORBETT, A., 2008. Does help help? Introducing the
Bayesian evaluation and assessment methodology. In Intelligent Tutoring Systems. ITS
2008, B. P. Woolf, E. Aïmeur, R. Nkambou, S. Lajoie, Eds. Lecture Notes in Computer
Science, Springer, Berlin, Heidelberg, 383-394.

BECKER, B. A., GLANVILLE, G., IWASHIMA, R., MCDONNELL, C., GOSLIN, K., AND MOONEY, C.,
2016. Effective compiler error message enhancement for novice programming students.
Computer Science Education 26, 2-3, 148-175.

BOSCH, N., AND PAQUETTE, L., 2021. What' s next? Sequence length and impossible loops in
state transition measurement. Journal of Educational Data Mining. 13, 1, 1-23.

CARTER, A. S., HUNDHAUSEN, C. D., AND ADESOPE, O., 2015. The normalized programming
state model: Predicting student performance in computing courses based on programming
behavior. In Proceedings of the 11th Annual International Conference on International
Computing Education Research (ICER 2015). Association for Computing Machinery, 141-
150.

CECHÁK, J., AND PELÁNEK, R., 2021. Experimental evaluation of similarity measures for
educational items. In Proceedings of the 14th International Conference on Educational
Data Mining (EDM 2021), S. I. H. Hsiao, S. Sahebi, F. Bouchet, and J. Vie, Eds.
International Educational Data Mining Society, 553-558.

CEN, H., KOEDINGER, K., AND JUNKER, B., 2006. Learning factors analysis: A general method
for cognitive model evaluation and improvement. In Intelligent Tutoring Systems. ITS
2006, M. Ikeda, K. D. Ashley, and T. Chan, Eds. Lecture Notes in Computer Science, vol
4053, Springer, Berlin, Heidelberg, 164-175.

CHALMERS, R. P., 2012. mirt: A multidimensional item response theory package for the R
environment. Journal of Statistical Software, 48, 6, 1-29.

CHOI, Y., LEE, Y., CHO, J., BAEK, J., KIM, B., CHA, Y., SHIN, D., BAE, C., AND HEO, J., 2020.
Towards an appropriate query, key, and value computation for knowledge tracing. In

95 Journal of Educational Data Mining, Volume 15, No 1, 2023

Proceedings of the 7th ACM Conference on Learning @ Scale (L@S 2020). Association
for Computing Machinery, 341-344.

CORBETT, A. T., AND ERSON, J. R., 1994. Knowledge tracing: Modeling the acquisition of
procedural knowledge. User Modeling and User-Adapted Interaction 4, 4, 253-278.

DAGNE, G. A., HOWE, G. W., BROWN, C. H., AND MUTHÉN, B. O., 2002. Hierarchical modeling
of sequential behavioral data: An empirical Bayesian approach. Psychological Methods 7,
2, 262-280.

EMBRETSON, S. E., AND REISE, S. P., 2000. Item Response Theory for Psychologists. Lawrence
Erlbaum Associates.

FITZGERALD, S., LEWANDOWSKI, G., MCCAULEY, R., MURPHY, L., SIMON, B., THOMAS, L., AND
ZANDER, C., 2008. Debugging: Finding, fixing and flailing, a multi-institutional study of
novice debuggers. Computer Science Education 18, 2, 93-116.

GERVET, T., KOEDINGER, K., SCHNEIDER, J., AND MITCHELL, T., 2020. When is deep learning
the best approach to knowledge tracing? Journal of Educational Data Mining 12, 3, 31-54.

GONG, Y., BECK, J. E., AND HEFFERNAN, N. T., 2011. How to construct more accurate student
models: Comparing and optimizing knowledge tracing and performance factor analysis.
International Journal of Artificial Intelligence in Education 21, 1–2, 27-45.

HOSSEINI, R., AND BRUSILOVSKY, P., 2013. JavaParser: A fine-grain concept indexing tool for
java problems. In The 1st Workshop on AI-supported Education for Computer Science, N.
Le, K. E. Boyer, B. Chaudhry, B. Di Eugenio, S. I. H. Hsiao, L. A. Sudol-Delyser, Eds.
CEUR Workshop Proceedings, vol 1009, 60-63.

JADUD, M. C., 2006a. Methods and tools for exploring novice compilation behaviour. In
Proceedings of the 2nd International Workshop on Computing Education Research (ICER
2006). Association for Computing Machinery, 73-84.

JADUD, M. C., 2006b. An exploration of novice compilation behaviour in BlueJ. Ph.D. thesis,
University of Kent, Canterbury, United Kingdom.

JURAFSKY, D., AND MARTIN, J. H., 2000. Speech and language processing: An introduction to
natural language processing, computational linguistics, and speech recognition. Pearson
Prentice Hall.

LE, Q., AND MIKOLOV, T., 2014. Distributed representations of sentences and documents.
Proceedings of the 31st International Conference on Machine Learning (ICML 2014), E.
P. Xing and T. Jebara, Eds. Association for Computing Machinery, 1188-1196.

LEE, Y., CHOI, Y., CHO, J., FABBRI, A. R., LOH, H., HWANG, C., LEE, Y., KIM, S., AND RADEV,
D., 2019. Creating a neural pedagogical agent by jointly learning to review and assess.
arXiv. https://doi.org/10.48550/arxiv.1906.10910

LIU, Q., HUANG, Z., YIN, Y., CHEN, E., XIONG, H., SU, Y., AND HU, G., 2021. EKT: Exercise-
aware knowledge tracing for student performance prediction. IEEE Transactions on
Knowledge and Data Engineering, 33, 1, 100-115.

LUCKIN, R., HOLMES, W., GRIFFITHS, M., AND FORCIER, L. B., 2016. Intelligence Unleashed:
An Argument for AI in Education. Pearson Education, London.

MAO, Y., ZHI, R., AND KHOSHNEVISAN, F., 2019. One minute is enough: Early prediction of
student success and event-level difficulty during a novice programming task. In
Proceedings of the 12th International Conference on Educational Data Mining (EDM

96 Journal of Educational Data Mining, Volume 15, No 1, 2023

2019), C. F. Lynch, A. Merceron, M. Desmarais, R. Nkambou, Eds. International
Educational Data Mining Society, Montréal, Canada, 119-128.

NATTI, A., AND ATHREY, D., 2019. CSEDM 2019 challenge. In Joint Proceedings of the 2nd
CSEDM Workshop at International Conference on Learning Analytics and Knowledge
2019, D. Azcona, Y. V. Paredes, S. I. H. Hsiao, and T. W. Price, Eds. CEUR Workshop
Proceedings.

PANDEY, S., AND KARYPIS, G., 2019. A self-attentive model for knowledge tracing. In
Proceedings of the 12th International Conference on Educational Data Mining (EDM
2019), C. F. Lynch, A. Merceron, M. Desmarais, R. Nkambou, Eds. International
Educational Data Mining Society, 384-389.

PARDOS, Z. A., AND HEFFERNAN, N. T., 2010. Modeling individualization in a Bayesian
networks implementation of knowledge tracing. In User Modeling, Adaptation, and
Personalization (UMAP 2010), P. De Bra, A. Kobsa, D. Chin, Eds. Lecture Notes in
Computer Science, vol 6075, Springer, Berlin, Heidelberg, 255-266.

PAVLIK JR, P. I., CEN, H., AND KOEDINGER, K. R., 2009. Performance factors analysis – a new
alternative to knowledge tracing. In Proceedings of the 14th International Conference on
Artificial Intelligence in Education (AIED 2009), V. Dimitrova, R. Mizoguchi, B. du
Boulay, A. Graesser, Eds. IOS Press, Amsterdam, Netherlands, 531–538.

PEDRO, M. A. S., BAKER, R. S. J. D., AND GOBERT, J. D., 2013. What different kinds of
stratification can reveal about the generalizability of data-mined skill assessment models.
In Proceedings of the 3rd International Conference on Learning Analytics and Knowledge
(LAK’13). Association for Computing Machinery, 190-194.

PELÁNEK, R., 2020. Measuring similarity of educational items: An overview. IEEE
Transactions on Learning Technology 13, 2, 354-366.

PELÁNEK, R., EFFENBERGER, T., VANĚK, M., SASSMANN, V., AND GMITERKO, D., 2018.
Measuring item similarity in introductory programming. In Proceedings of the 5th Annual
ACM Conference on Learning at Scale (L@S 2018). Association for Computing
Machinery, Article 19.

PIECH, C., BASSEN, J., HUANG, J., GANGULI, S., SAHAMI, M., GUIBAS, L. J., AND SOHL-
DICKSTEIN, J., 2015. Deep knowledge tracing. In Proceedings of Advances in Neural
Information Processing Systems, vol. 28, S. Becker, S. Thrun, K. Obermayer, Eds. MIT
Press, Cambridge, MA, United States, 505–513.

PINTO, J. D., ZHANG, Y., PAQUETTE, L., AND FAN, A. X., 2021. Investigating elements of
student persistence in an introductory computer science course. In Joint Proceedings of the
5th CSEDM Workshop at the International Conference on Educational Data Mining 2021,
T. W. Price and S. San Pedro, Eds. CEUR Workshop Proceedings, vol 3051.

REHUREK, R., AND SOJKA, P., 2010. Software framework for topic modelling with large
corpora. In Proceedings of LREC 2010 Workshop New Challenges for NLP Frameworks.
University of Malta, Valletta, Malta, 46-50.

ROSENTHAL, J. A., 1996. Qualitative descriptors of strength of association and effect size.
Journal of Social Service Research 21, 4, 37-59.

SAHEBI, S., AND BRUSILOVSKY, P., 2018. Student performance prediction by discovering Inter-
Activity relations. In Proceedings of the 11th International Conference on Educational

97 Journal of Educational Data Mining, Volume 15, No 1, 2023

Data Mining (EDM 2018), K. E. Boyer, M. Yudelson, Eds. International Educational Data
Mining Society, 87-96.

SAHEBI, S., LIN, Y. R., AND BRUSILOVSKY, P., 2016. Tensor factorization for student modeling
and performance prediction in unstructured domain. In Proceedings of the 9th
International Conference on Educational Data Mining (EDM 2016), T. Barnes, M. Chi,
M. Feng, Eds. International Educational Data Mining Society, 502-506.

SARSA, S., LEINONEN, J., AND HELLAS, A., 2022. Empirical evaluation of deep learning models
for knowledge tracing: Of hyperparameters and metrics on performance and replicability.
Journal of Educational Data Mining 14, 2, 32-102.

SHI, Y., CHI, M., BARNES, T., AND PRICE, T.W., 2022. Code-DKT: A code-based knowledge
tracing model for programming tasks. In Proceedings of the 15th International Conference
on Educational Data Mining (EDM 2022), A. Mitrovic, N. Bosch, Eds. International
Educational Data Mining Society, 50-61.

SHI, Y., MAO, Y., BARNES, T., CHI, M., AND PRICE, T. W., 2021. More with less: Exploring
how to use deep learning effectively through semi-supervised learning for automatic bug
detection in student code. In Proceedings of the 14th International Conference on
Educational Data Mining (EDM 2021), S. I. H. Hsiao, S. Sahebi, F. C. Bouchet, J. Vie,
Eds. International Educational Data Mining Society, 446-453.

SHI, Y., SHAH, K., WANG, W., MARWAN, S., PENMETSA, P., AND PRICE, T. W., 2021. Toward
semi-automatic misconception discovery using code embeddings. In Proceedings of the
11th International Conference on Learning Analytics and Knowledge (LAK’21).
Association for Computing Machinery, 606-612.

SHUTE, V. J., AND ZAPATA-RIVERA, D., 2012. Adaptive educational systems. In Adaptive
Technologies for Training and Education, P. J. Durlach, A. M. Lesgold, Eds. Cambridge
University Press, 7-27.

STAMPER, J. C., KOEDINGER, K. R., BISWAS, G., BULL, S., KAY, J., AND MITROVIC, A., 2011.
Human-machine student model discovery and improvement using datashop. In Artificial
Intelligence in Education. AIED 2011, G. Biswas, S. Bull, J. Kay, A. Mitrovic, Eds.
Lecture Notes in Computer Science, vol 6738, Springer, Berlin, Heidelberg, 353-360.

TABANAO, E. S., RODRIGO, M. M. T., AND JADUD, M. C., 2011. Predicting at-risk novice Java
programmers through the analysis of online protocols. In Proceedings of the 7th
International Workshop on Computing Education Research (ICER 2011). Association for
Computing Machinery, New York, NY, United States, 85-92.

VILLAMOR, M. M., 2020. A review on process-oriented approaches for analyzing novice
solutions to programming problems. Research and Practice in Technology Enhanced
Learning 15, 1-23.

VON DAVIER, M., 2016. Rasch model. In Handbook of Item Response Theory, Volume One,
W. J. van der Linden, Eds. Chapman and Hall/CRC, 31-50.

WANG, L., SY, A., LIU, L., AND PIECH, C., 2017. Learning to represent student knowledge on
programming exercises using deep learning. In Proceedings of the 10th International
Conference on Educational Data Mining (EDM 2017), X. Hu, T. Barnes, A. Hershkovitz,
L. Paquette, Eds. International Educational Data Mining Society, 324-329.

WOOLF, B. P., LANE, H. C., CHAUDHRI, V. K., AND KOLODNER, J. L., 2013. AI grand
challenges for education. AI Magazine 34, 4, 66-84.

98 Journal of Educational Data Mining, Volume 15, No 1, 2023

YECKEHZAARE, I., MULLIGAN, V., RAMSTAD, G., AND RESNICK, P., 2022. Semester-level
spacing but not procrastination affected student exam performance. In Proceedings of 12th
International Conference on Learning Analytics and Knowledge (LAK 2022). Association
for Computing Machinery, 304-314.

YUDELSON, M., HOSSEINI, R., AND BRUSILOVSKY, P., 2014. Investigating automated student
modeling in a java MOOC. In Proceedings of the 7th International Conference on
Educational Data Mining (EDM 2014), J. Stamper, Z. Pardos, M. Mavrikis, B. M.
Mclaren, Eds. International Educational Data Mining Society, 261-264.

ZHANG, J., SHI, X., KING, I., AND YEUNG, D., 2017. Dynamic Key-Value memory networks for
knowledge tracing. In Proceedings of the 26th International Conference on World Wide
Web. International World Wide Web Conferences Steering Committee, 765-774.

ZHAO, S., WANG, C., AND SAHEBI, S., 2020. Modeling Knowledge Acquisition from Multiple
Learning Resource Types. In Proceedings of the 13th International Conference on
Educational Data Mining (EDM 2020), A. N. Rafferty, J. Whitehill, C. Romero, and V.
Cavalli-Sforza, Eds. International Educational Data Mining Society, 313-324.

99 Journal of Educational Data Mining, Volume 15, No 1, 2023

