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Abstract
It is widely recognized that debugging is challenging for novice programmers and, 
as such, computing educators and researchers have called for explicit debugging 
instruction. Debugging requires various knowledge and skills, and different students 
may show different strengths and weaknesses. An understanding of such individual 
differences is important as it may guide personalized instruction. The current study 
investigated individual differences in debugging in an undergraduate introductory 
computer science course. We extracted variables related to debugging from stu-
dents’ submission traces to programming problems in the first month of the course. 
We applied latent profile analysis to these variables and identified three distinc-
tive profiles. Profile A showed higher debugging accuracy and speed. Profile B 
showed lower debugging performance in runtime and logic errors, while profile C 
had lower performance in syntactic errors and tended to make large code edit every 
submission. Students’ gender and self-rated programming ability predicted profile 
membership. Moreover, profile A got higher scores than the others in the first exam, 
and this difference persisted in the second and third exam, even controlling for 
background variables and score on the first exam. We investigated how students 
transitioned across debugging profiles over the duration of the course. From the 
beginning to the end of the course, a large part of students stayed in lower perfor-
mance profiles. Overall, these findings support the call that debugging should be 
taught at an early stage and suggest that different groups may need different debug-
ging instructions or support.

Keywords Debugging · Novice programmer · CS1 education · Programming 
trace · Person-centered study · Latent profile analysis
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1 Introduction

Debugging is an indispensable but difficult part of programming, with 73% of 
professional software developers reporting that they spend 20–60% of their work 
time debugging (Perscheid et al., 2017). However, it can be frustrating and time-
consuming for novice programmers, who have an inadequate understanding of pro-
gramming constructs (e.g., loop and recursion) and lack experts’ knowledge base of 
stereotypical bugs and their symptoms (Li et al., 2019; McCauley et al., 2008; Pea, 
1986). Moreover, even experienced programmers may have a low level of debug-
ging knowledge (Beller et al., 2018). Some of the main reasons for this phenomenon 
may be that debugging is hardly emphasized in introductory computer science (CS1; 
Malik & Coldwell-Neilson 2017) and most programmers receive little formal debug-
ging training (Perscheid et al., 2017).

Therefore, increasingly, computing educators and researchers have called for 
teaching debugging explicitly at an early stage (Chmiel & Loui, 2004; Li et al., 2019; 
McCauley et al., 2008; Rich et al., 2019). Empirical evidence supports this initiative. 
Studies have shown that explicit instruction on debugging may foster students’ skill 
to hypothesize the bug cause (Whalley et al., 2021a), improve debugging perfor-
mance (Michaeli & Romeike, 2019), and enhance the ability to read programs and 
solve programming tasks (Eranki & Moudgalya, 2014). The benefits may extend to 
non-cognitive factors, such as self-efficacy toward debugging (Michaeli & Romeike, 
2019) and critical self-reflection (DeLiema et al., 2019).

Novices in general may face different challenges, given that debugging requires 
various skills and knowledge (Decasse & Emde, 1988; Li et al., 2019). One group 
may be good at debugging some types of errors and applying some strategies, while 
another group may be good at the others. Identifying latent groups with heterogeneous 
patterns of debugging performance and strategies may allow for more personalized 
instruction. Thus, the person-centered approach, which aims to model heterogeneous 
patterns in variables of interest (Hickendorff et al., 2018), has the potential for under-
standing individual differences in debugging and providing actionable insights for 
instruction. Indeed, empirical studies have found groups of novices with qualitative 
differences in programing (Blikstein et al., 2014; Jiang et al., 2019; Perkins et al., 
1986). For example, when analyzing programming logs on an assignment, Blikstein 
et al., (2014) found three groups with different programming pathways. Group mem-
bership had better predictive power on exam scores than assignment scores. Never-
theless, these person-centered studies have focused on how novices wrote a correct 
program rather than on how they handled the task of debugging. There is a lack of 
person-centered analysis on novices’ debugging. This paper aims to address this gap.

Specifically, the current study extracted variables related to debugging from under-
graduates’ submission traces to programming problems in a CS1 course. We con-
ducted a latent profile analysis (LPA) on these variables and identified three profiles 
with distinctive debugging patterns. Profile A showed higher debugging accuracy and 
speed. Profile B showed lower debugging performance in runtime and logic errors, 
while profile C had lower performance in syntactic errors and tended to make large 
code edit every submission. Students’ demographics, prior programming experi-
ences, and exam scores were related to profile membership. Latent transition analysis 
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found that a large part of students stayed in the lower performance profiles from the 
beginning to the end of the course. To the best of our knowledge, this work is the first 
person-centered study that utilizes programing traces to understand novices’ differ-
ences in debugging. The results bring insights about individual differences in debug-
ging at an early stage and how these differences are related to students’ backgrounds 
and influence subsequent exam scores. The finding supports the call that debugging 
should be taught early, and the revealed distinctive debugging profiles provide guid-
ance for personalized debugging instructions.

2 Literature review

2.1 Programming errors and debugging process

Debugging is the activity of finding and fixing errors or bugs (or faults, defects) in a 
program (McCauley et al., 2008; Zeller, 2009). It is a special case of troubleshoot-
ing (Katz & Anderson, 1987; Li et al., 2019). Some researchers distinguish between 
errors and bugs: errors are externally observable symptoms of bugs, while bugs are 
the cause of errors (Zeller, 2009). Errors can be classified into three general categories 
(Hristova et al., 2003; McCauley et al., 2008): (1) syntax or compiler errors, which 
occur when the program violates the syntax rules of the language and cannot be 
compiled, such as missing a ”}”; (2) runtime errors, which occur when the program 
can be compiled but not run or executed, such as “index out of bounds”; (3) logic or 
semantic errors, which occur when the program can be executed but does not gener-
ate the expected output. For example, a logic error would occur if the expected output 
for a given program is the difference between two integers, but the actual output is 
the sum of the two integers instead. Prior studies have investigated novices’ debug-
ging on runtime and logic errors together without making an explicit distinction (e.g., 
Alqadi & Maletic 2017; Fitzgerald et al., 2008), possibly because these errors are 
more general than syntax errors and relatively independent of language (Pea, 1986).

McCauley et al., (2008) reviewed studies around programming errors and con-
cluded that most errors or bugs occur because of fragile knowledge or a superbug. 
Fragile knowledge is the knowledge that students partially know and cannot apply 
correctly (Perkins & Martin, 1986). The superbug refers to the misconception that 
ordering the computer or system via programming is analogous to human commu-
nication, and the system has “intelligent interpretive powers” of understanding pro-
gramming language (Pea, 1986). Misconceptions about language-related constructs 
also result in some errors. However, McCauley et al., (2008) noted that why bugs 
occur has no simple answer.

Novices tend to find errors randomly, while experts use a systematic debugging 
process (Whalley et al., 2021a). Systematic debugging is an essential computational 
thinking practice (Rich et al., 2020). It can assist programmers in efficiently fixing 
even tractable errors (Spinellis, 2018). There are a few frameworks of systematic 
debugging (Klahr & Carver, 1988; Li et al., 2019; Zeller, 2009). For instance, Li et 
al., (2019) adapted a four-step framework of systematic troubleshooting for debug-
ging. The first step is constructing a mental model of the purpose of a program and 

1 3



Education and Information Technologies

how it achieves the purpose. The second step is identifying the discrepancy between 
the expected and actual behaviors of the program, i.e., the errors. The third step, 
which is the core step, is developing a hypothesis about the cause of errors and evalu-
ating the hypotheses. This step is iterative. A hypothesis evaluated as correct can help 
debuggers to narrow down the range of bug locations and develop finer hypotheses. 
By contrast, an incorrect hypothesis is used to generate alternative hypotheses. Nov-
ices are particularly weak at this step. They have difficulty in generating correct or 
precise hypotheses (Whalley et al., 2021a) and often stick with initial hypotheses 
without considering alternatives (Fitzgerald et al., 2010; Vessey, 1985). The final step 
is generating and verifying solutions. The other frameworks of systematic debugging 
can be aligned with Li et al.’s four steps (Whalley et al., 2021a).

2.2 Debugging knowledge and strategies

Debugging is a complex skill and entails various knowledge (Decasse & Emde, 
1988). Based on a troubleshooting framework, Li et al., (2019) classified debug-
ging knowledge into five types: domain, system and procedural knowledge, debug-
ging strategies, and programming experiences. (1) Domain knowledge refers to the 
understanding of the implementation language of a program. (2) System knowledge 
concerns the components, interactions between components, structure and purpose of 
the program. (3) Procedural knowledge concerns utilizing debugging variables of an 
IDE, such as breakpoints and memory inspection. (4) Debugging strategies include 
global and local strategies. Global strategies are independent of programs and can be 
applied across contexts, such as forward and backward reasoning (Katz & Anderson, 
1987). Local strategies are for special programs, such as using print statements and 
test cases. (5) Programming experiences form the knowledge base of stereotyped 
bugs and their symptoms. This knowledge base may be useful for developing rational 
hypotheses about bugs (Gugerty & Olson, 1986).

Different knowledge is interdependent. Without an understanding of implementa-
tion language and program behaviors, procedural knowledge and debugging strate-
gies may not be applied effectively (Li et al., 2019). Thus, good debuggers are also 
good programmers (Ahmadzadeh et al., 2005; Fitzgerald et al., 2008). On the other 
hand, debugging is challenging without mastering procedural knowledge and debug-
ging strategies. Consequently, good programmers are not necessarily good at debug-
ging (Ahmadzadeh et al., 2005; Fitzgerald et al., 2008).

Researchers have investigated novices’ debugging strategies to understand their 
debugging processes (McCauley et al., 2008). Studies have found that novices used 
various strategies to locate and fix errors (Fitzgerald et al., 2010; Murphy et al., 2008). 
Some strategies were usually effective, such as rereading the problem specification 
and reexamining the program output to improve the understanding of the problem 
and program. Some strategies were less effective, such as working around problems 
(e.g., replacing the code with completely new code) and tinkering (editing the pro-
gram randomly and unproductively). The others were used both effectively and inef-
fectively. For example, students used print statements a lot to trace the program, but 
these statements are often only useful for following the flow of control.
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Rich et al., (2019) reviewed K-8 CS education studies and identified debugging 
strategies that students should learn. While these strategies are derived from K-8 
studies, they may be helpful for novices regardless of the grade. For instance, itera-
tive refinement refers to making a small change on the code and testing it to check if 
the error is fixed. This is a special case of incremental development, a “code-a-little, 
test-a-little” method for software development that is recommended for both novices 
and experts (Baumstark & Orsega, 2016; Larman & Basili, 2003). The strategy of 
addressing compiler errors by their appearance order has also been investigated by 
studies in higher education, known as “fix the first, ignore the rest” (Becker et al., 
2018). It is useful for debugging because compiler errors in the earlier part of a pro-
gram may cause errors in the subsequent part. Fixing the former automatically fixes 
the latter. This strategy is a special form of correcting one bug at a time (Liu et al., 
2017), which emphasizes decomposing the task of debugging compiler errors by 
focusing on and editing one error at a time because compiler errors may be mutually 
related.

2.3 Novices’ debugging behaviors and programming traces

Studies have observed how novices debug their own and others’ buggy code. In the 
latter situation, researchers can focus on debugging on particularly designed errors 
and obtain a deep understanding of debugging performance and difficulties on these 
errors (Ahmadzadeh et al., 2005; Alqadi & Maletic, 2017; Fitzgerald et al., 2008). 
However, findings under this situation may have limited generalizability to the real 
setting where participants usually troubleshoot their own buggy code because the 
familiarity toward their code may differ from the familiarity toward others’ code 
(Lewis, 2012). Consequently, debugging behavior and strategy may be different. 
Indeed, novices were more likely to use forward reasoning when debugging others’ 
code but backward reasoning when debugging their code (Katz & Anderson, 1987). 
The current study focused on novices’ behaviors while debugging their own code.

In either situation, the process data is critical for understanding debugging. Stud-
ies have used process data from various channels. Think-aloud data and human 
observation capture rich information about debugging progression and strategies 
(Fitzgerald et al., 2008; Liu et al., 2017; Murphy et al., 2008), but data collection 
and processing are labor-consuming and not scalable. By contrast, it is easier to col-
lect a large sample’s programming traces over many problems because the collec-
tion can be automated (Ihantola et al., 2015). Programming traces have been used 
to extract indicators of debugging performance, such as debugging success rate and 
time (Ahmadzadeh et al., 2005; Alqadi & Maletic, 2017; Fitzgerald et al., 2008). 
Based on programming traces, Fitzgerald et al., (2008) found that novices with high 
programming ability might show low debugging success rates. Debugging success 
rate and time were related to years of programming experience (Alqadi & Maletic, 
2017). Some debugging strategies can also be inferred from programming traces, 
such as correcting one bug at a time (Becker et al., 2018; Liu et al., 2017) and itera-
tive refinement (Kazerouni et al., 2017).
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2.4 Novices’ differences in debugging

Studies have used process data to understand novices’ differences in debugging. Lin 
et al., (2016) undergraduates’ differences in eye-movement sequences while fixing 
buggy programs. They found that participants with high-debugging performance 
tended to trace the program in an order matching the logic of the code, while partici-
pants with low performance more likely traced the program in a line-by-line order, 
without considering the logic. Alqadi & Maletic (2017) asked novices to fix a pro-
gram with eight errors and grouped novices manually into three clusters based on the 
number of errors fixed. Stoppers fixed six or fewer errors, while movers fixed seven 
or eight errors. Tinkerers generated more errors or did not fix any error. Jemmali 
et al., (2020) visualized programming traces in a puzzle game to investigate how 
novices corrected errors toward a correct solution. They identified three participants 
with distinct debugging progression. Participant A showed an efficient progression: 
errors in their code linearly and quickly decreased to zero. By contrast, participant 
B struggled with the errors at the beginning but fixed them through a trial-and-error 
approach. Participant C made a lot of submissions with medium to large edits on 
code, but the same errors persisted.

These studies have brought different insights into novices’ differences in debug-
ging. However, they shared a methodological drawback: a small sample of novices 
was grouped manually. Such manual grouping may not be robust due to the arbitrary 
cut-off value or the subjectivity of the decision (Hickendorff et al., 2018). Moreover, 
the grouping in Lin et al., (2016) as well as Alqadi & Maletic (2017) is based on a 
single indicator of debugging performance, assuming that differences in this single 
indicator sufficiently represent differences in debugging. This assumption may not 
hold because debugging entails various knowledge and skills. Two novices’ differ-
ences may be inconsistent across these knowledge and skills.

3 The current study

The current study applied the person-centered method, which can uncover latent sub-
populations in a statistically sound way, to address the above methodological limi-
tation. The main person-centered approach is clustering (Hickendorff et al., 2018), 
including traditional clustering algorithms, such as K-means and hierarchical cluster-
ing, and model-based clustering, such as latent profile analysis (LPA; Oberski 2016). 
LPA estimates the membership probabilities that a subject belongs to latent subpopu-
lations and assigns this subject to the subpopulation with the highest membership 
probability. Some traditional clustering algorithms also estimate the membership 
probability, such as fuzzy c-means (Bezdek et al., 1984), but LPA allows controlling 
the assignment error in the subsequent analysis of the latent membership with exter-
nal variables (Asparouhov & Muthén, 2014). In addition, researchers can quantify 
how well the LPA model fits the data. Thus, this study applied LPA to debugging-
related variables to investigate novices’ differences in debugging.

Figure 1 displays the conceptual model and research questions of this study. Phases 
one to three represent earlier to latter parts of the course, respectively. The focus 
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is on the latent profiles at phase one because researchers have suggested teaching 
debugging as early as possible (Chmiel & Loui, 2004; Li et al., 2019; Murphy et al., 
2008). Firstly, we ask what debugging profiles emerge from students’ programming 
traces in phase one of the course (research question 1; RQ1). Based on the result of 
RQ1, we further investigate the relationship between debugging profile membership 
and students’ backgrounds (RQ2) as well as exam performance (RQ3). Students in 
a certain debugging profile at phase one might not stay in the same profile in subse-
quent phases because they might learn about debugging knowledge and skills over 
the course of this study. Thus, for RQ4, we utilize students’ programming traces in 
phases two and three to explore how students transit among debugging profiles over 
the duration of the course.

Fig. 1 Conceptual model of the current study
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4 Method

4.1 Participants and data

Data were collected from a CS1 course at a public university in the US during the 
Fall 2019 semester. The course lasted 16 weeks. It taught Java programming and 
was hosted on PrairieLearn, a web-based, problem-driven learning system (West, 
Herman, & Zilles, 2015). Students used the system to submit solutions to program-
ming homework and lab problems as well as take weekly quizzes and three exams. 
Students could submit solutions to a programming problem as many times as they 
wanted until the deadline of homework and labs (or before the quizzes and exams ran 
out of time) to obtain full credit. The course instructor expected that a programming 
problem should take no more than 10–15 min to complete.

The learning system automatically graded each submission and generated feed-
back about mistakes. It first tried compiling a submission to check if the submission 
contained checkstyle or syntax errors. A checkstyle error occurred when the submit-
ted code did not match the required style (e.g., an operator was not surrounded by 
whitespace). If a submission could not be compiled, i.e., it contained checkstyle or 
syntax errors, the system displayed an error message, which mainly contained the 
errors and corresponding lines of code. If a submission could be compiled, the system 
would run problem-specific tests on it. These tests checked whether the submission 
could implement the problem’s requirement. For instance, if the problem asked stu-
dents to write a program to compute the sum of two numbers, the test could randomly 
generate two numbers, input the numbers to the submitted code, and examine the 
equality between the sum and the output of the submission. The test could repeat 
this procedure a few times to avoid coincidence. If the submission could output a 
number equal to the sum every time, it implemented the requirement. Otherwise, the 
code contained test errors (including runtime or logic errors), and the system would 
display a test error message. Different from the checkstyle and syntax error message, 
the test error message mainly contained test errors without corresponding lines of 
code because a specific line of code rarely caused a test error.

The learning system automatically recorded the code, date, correctness, and error 
feedback of submissions. Together with other information such as exam scores, 
these submission traces were stored in a secure database outside the learning system. 
Because students’ debugging skills developed during the course, aggregating the sub-
missions over the whole semester was unreasonable. Thus, we split the semester into 
three phases: phase one was before the first exam (occurring in the middle of the fifth 
week), phase two was between the first and second exams (occurring in the middle 
of the tenth week), and phase three was after the second exam. For RQs 1 to 3, we 
only used the submissions in phase one because researchers have suggested teaching 
debugging as early as possible (Chmiel & Loui, 2004). Early identification of latent 
debugging profiles allows earlier personalized instruction or intervention. For RQ 
4, we used data from all phases and conducted latent transition analysis (Collins & 
Lanza, 2009) to investigate students’ transitions among different debugging profiles 
across phases (see Sect. 3.3 Analyses for details).
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Six hundred and seventeen students completed the course and approved the use of 
their data for research purposes. Before the course started, they completed a survey 
about their prior CS experiences and their expected time commitment for out-of-
class work. Table 1 presents the demographic information. Note that the same data 
have been used in prior work to investigate novice programmers’ productive and 
unproductive persistence (Pinto et al., 2021), which is distinct from the current study 
conceptually and methodologically.

4.2 Measurements

4.2.1 Debugging variables

We extracted debugging variables from submission traces of homework problems, 
lab exercises, and quizzes. Exam submissions were excluded to avoid confounding 
the effect of debugging profiles on exam scores with students’ programming behav-
iors during exams. Two sets of variables were related to debugging proficiencies: the 
debugging success rate and time. These variables have been used as debugging per-
formance indicators in prior studies (Alqadi & Maletic, 2017; Chmiel & Loui, 2004; 
Fitzgerald et al., 2008).

(1–3) Debugging success rate for checkstyle errors, syntax errors, and test errors. 
The success rate for fixing checkstyle errors was calculated as the proportion of pairs 
of successive submissions where at least one checkstyle error in the first submission 
disappeared in the second submission (among all pairs where the first submission 
had checkstyle errors). The success rates for fixing syntax errors and fixing test errors 
followed the same operationalization.

Note that the feedback message only indicated one test error at a time for a sub-
mission (the first error encountered), but it might indicate multiple checkstyle and 
compiler errors. As such, we only considered whether the next submission fixed at 
least one error rather than counting how many errors the next submission fixed. We 
argue that both fixing one error and multiple errors indicated that the student was 
making progress toward a correct solution. The difference between fixing one error 
and multiple errors might reflect more differences in debugging strategies than in 

Table 1 Demographic information
Gender Female Male Withheld a

Count 185 428 4
Percent 29.98% 69.37% 0.65%
Major CS CS + b Others
Count 102 169 346
Percent 16.53% 27.39% 56.08%
Grade 1st year 2nd year 3rd year 4th year
Count 502 75 19 21
Percent 81.36% 12.16% 3.08% 3.40%
a: The student preferred not to report their gender.
b: The student was in a CS program plus another discipline, e.g., CS plus chemistry.
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debugging proficiencies. The seventh debugging variable considered the strategy of 
editing one versus multiple errors at a time.

(4–6) Debugging time for checkstyle errors, syntax errors, and test errors. 
The time for fixing checkstyle errors was the average time students spent fixing a 
checkstyle error. The time for fixing syntax errors and test errors follows the same 
operationalization.

We also computed two variables related to global debugging strategies but not 
necessarily related to debugging performance.

(7) Multiple-edit rate for syntax errors. This variable was a proportion computed 
via Eq. 1.

 
multiple − editrate =

N1
N2

 (1)

N2 is the number of consecutive submission pairs where the first submission had 
multiple syntax errors. N1 is the number of consecutive submission pairs where the 
second submission edited more than one place associated with the syntax errors of 
the first submission. This variable was related to but distinct from the debugging suc-
cess rate for syntax errors. A student might edit multiple compiler errors in one sub-
mission but fix none of them, one of them, or all of them. Moreover, they might edit 
one error place but fix multiple errors because errors in the earlier part might cause 
errors in the latter part of a program. This variable is related to the strategy of correct-
ing one bug at a time (Liu et al., 2017). We did not compute the multiple-edit rate for 
checkstyle errors because checkstyle errors were independent of each other. We did 
not compute this rate for test errors because the feedback message only indicated one 
test error (the first one that occurred) for a submission.

(8) Change rate in code size. This variable quantified the relative magnitude of the 
code change between two consecutive submissions. It was the average normalized 
absolute difference between the number of tokens of two consecutive submissions on 
a problem. We computed the normalized absolute difference via Eq. 2:

 
changerate =

|T1 − T2|
Tf

 (2)

T1 and T2 are the number of tokens in the first and second submissions of two con-
secutive submissions on a problem1. Tf is the number of tokens in the student’s final 
submission on the problem. We divided |T1 − T2|  by Tf to normalize the difference 
since the length of a correct solution varied across problems. After obtaining the nor-
malized absolute differences of all pairs of successive submissions, we computed the 
mean as the change rate in code size. This variable might be related to the strategy 
of iterative refinement (Baumstark & Orsega, 2016; Rich et al., 2019). Specifically, 
in the problem-solving context of this study, a small edit at each submission had two 
advantages in comparison with a large edit. First, it was easier to understand why the 

1  Note that T1, T2, and Tf do not include the number of tokens in the starter code provided to the student 
for a problem.
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small edit fixed an error. Second, when the edit introduced new errors, it was easier 
to identify which part of the edit caused the new errors.

Debugging strategies that were impossible to compute from programming traces 
were not included in our analysis. For example, programming traces cannot provide 
information about whether a student used forward or backward reasoning to locate 
the cause of an error (Katz & Anderson, 1987). Some strategies were rarely used by 
students in this study, such as using print statements to check the intermediate values 
of a variable. We were unable to compute the exact frequency that students used print 
statements for debugging due to the large size of submissions, but on average, only 
9.05% of students used print statements at least once in a problem, and students used 
print statements in only 9.27% of problems. The few uses caused these strategies to 
have little variation across students and were not useful for distinguishing students.

4.2.2 Programming experiences

The survey conducted before the first class asked students about their programming 
experiences. One survey question asked students to rate their current programming 
abilities on a five-point scale, with five representing the highest level. The propor-
tions of students in levels one to five were 11.51%, 32.90%, 38.57%, 12.97%, and 
4.05% respectively.

Another question asked students which programming languages they were already 
familiar with before taking the class. Students could select “I’ve never programmed 
before!” or one or more of the following options: C, C#, C++, Java, JavaScript, 
MatLab, PHP, Python, and Swift. We recoded students’ responses to this question 
into four categories: (1) none (9.89%), students selected “I’ve never programmed 
before!”; (2) Java (17.83%), students only selected Java; (3) others (22.53%), stu-
dents selected one or more languages but not Java; (4) Java and others (49.75%), stu-
dents selected Java and at least one other language. We distinguished Java from other 
languages because the course specifically taught Java. We distinguished Java from 
Java and others because students familiar with Java and at least one other language 
might have more programming experiences than students only familiar with Java.

4.2.3 Time commitment

The survey contained one question asking students the time that they expected to 
devote each week to the course outside of class. Alternatives were 1 to 5 h, 5 to 
10 h, and 10 + hours, with a response proportion of 33.50%, 51.16%, and 15.45%, 
respectively.

4.2.4 Exam scores

The course of this study contained three exams, which occurred in the 5th ,10th, 
and 16th weeks, respectively. An exam might involve anything covered up to the 
time, with emphasis on the material covered since the last exam. Each exam was a 
mix of multiple-choice problems and small programming problems. All problems 
were automatically graded. The maximum point possible on an exam was 100, with 
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programming problems accounting for over half of the points. The multiple-choice 
questions allowed one or two attempts, while the programming problems allowed 
unlimited attempts. Students had one hour to complete an exam.

4.3 Analyses

We preprocessed the data before the formal analysis. One student made no more 
than 20 submissions in phase one, far fewer than the others (≥ 78 submissions). This 
student was removed from the analysis. Three students had extreme variable val-
ues (outside of mean ± five standard deviations) and were removed from the analysis 
because extreme outliers may undesirably influence the estimation of LPA (Vermunt 
& Magidson, 2002). The multiple-edit rate for syntax errors, the second and third 
exam scores, and the time commitment had missing data with a proportion from 0.3 
to 4.1%. The Little’s test indicated that the missing data were missing completely at 
random (χ2 = 99.13, df = 79, p = 0.062). Missing values were filled via the full infor-
mation maximum likelihood imputation (Enders & Bandalos, 2001).

Based on the eight debugging variables, we conducted LPA to identify debugging 
profiles in phase one using Mplus 8. The analysis followed the procedure recom-
mended by Spurk et al., (2020). The variables did not obey a multivariate normal 
distribution, so we used maximum likelihood estimation with sandwich estimator 
standard errors that are robust to non-normality. We examined models including one 
to six profiles with 3,000 random sets of start values, 100 iterations for each random 
start, and the 200 best solutions retained for final stage optimization. The variable 
variances were freely estimated across profiles because findings in prior studies have 
suggested that groups with different programming trajectories might have different 
variances in relevant variables (Blikstein et al., 2014; Jiang et al., 2019). Covariances 
or correlations were equally estimated across profiles as no theory or empirical evi-
dence suggests that the correlations between debugging variables vary across groups. 
The best log-likelihood for the final stage solution was replicated in all models. We 
then decided on the appropriate number of profiles based on statistical fit values 
and content-related considerations. The statistical fit indices included the consistent 
Akaike information criterion (CAIC), the Bayesian information criterion (BIC), sam-
ple-size adjusted BIC (SABIC), the adjusted Lo-Mendell- Rubin likelihood ratio test 
(aLMR), and the bootstrap likelihood ratio test (BLRT) (Spurk et al., 2020). aLMR 
and BLRT compare the model of k profiles with a model of k-1 profiles. A significant 
result in these tests indicates that the model of k profiles is better than the model of 
k-1 profiles. We did not use AIC and entropy because they are not suitable for select-
ing the number of profiles (Tein et al., 2013). We reported entropy but only used it 
to evaluate the classification quality of a model. Entropy ranges from 0 to 1, with 1 
representing perfect classification.

After deciding on the number of debugging profiles for phase one, we examined 
relations between background variables and debugging profiles via the R3STEP 
option in Mplus (Asparouhov & Muthén, 2014). The main function of this option is 
a latent variable multinomial logistic regression where the profile membership was 
regressed on background variables, controlling classification errors. The background 
variables include gender, major, grade, self-rated programming ability, language 
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familiarity, and time commitment. Except for self-rated programming ability, the 
other variables were dummy coded. For gender, the female group was the reference 
group. Students who preferred not to report their gender were excluded from the cur-
rent analysis because the sample size (four) was too small to obtain reliable estimates. 
For major, students who were not pursuing a CS-related degree were the reference 
group. For grade, we only coded whether a student was in the 1st year because the 
number of students in the 3rd and 4th years was small. For language familiarity, the 
group unfamiliar with any programing language was the reference group. For time 
commitment, the group that expected themselves to invest 1 to 5 h per week was the 
reference group.

To investigate how exam scores differ across debugging profiles of phase one, 
we applied the Block-Croon-Hagenaars approach (BCH; Bakk & Vermunt 2016). 
Its main function is a weighted analysis of variance (ANOVA). The weights are 
inversely related to classification errors. We controlled the background variables 
because students’ backgrounds might influence exam scores.

We conducted latent transition analysis to investigate how students transitioned 
among debugging profiles. The problem complexity and difficulty increased over the 
semester, so debugging performance on earlier problems was not directly comparable 
with later problems (e.g., problems in phases one and two). Thus, we could not test 
the number of latent profiles simultaneously for all phases. Instead, we determined 
the profile number in phases two and three separately based on the aforementioned 
procedure for identifying the best number of debugging profiles. This procedure is 
suggested by researchers of latent transition analysis (Asparouhov & Muthén, 2014; 
Nylund-Gibson et al., 2014). We then used a three-step approach to estimate latent 
transition probabilities (Nylund-Gibson et al., 2014).

5 Results

5.1 RQ1: Identification of debugging profiles

Table 2 presents the statistical fit indices and tests for LPA models with one to six pro-
files. CAIC and SABIC decreased as the number of profiles increased. BIC reached 

Table 2 Fit statistics for models with one to six profiles
Model # FP LL CAIC BIC SABIC aLMR p and meaning BLRT p and 

meaning
Entropy

1 44 -6472.65 13040.27 13227.71 13088.02 - - -
2 61 -6228.24 12592.20 12847.99 12654.33 0.000 2 > 1 0.000 2 > 1 0.687
3 78 -6127.51 12434.10 12755.65 12508.02 0.001 3 > 2 0.000 3 > 2 0.702
4 95 -6055.87 12337.02 12721.48 12419.88 0.336 4 < 3 0.000 4 > 3 0.677
5 112 -6005.15 12284.93 12729.16 12373.59 0.201 5 < 4 0.000 5 > 4 0.695
6 129 -5955.60 12238.65 12739.18 12329.63 0.115 6 < 5 0.000 6 < 5 0.736
Note. #FP, number of free parameters; LL, log-likelihood; CAIC, consistent AIC; BIC, Bayesian information 
criterion; SABIC, sample-size adjusted BIC; aLMR, adjusted Lo-Mendell-Rubin likelihood ratio test; BLRT, 
bootstrap likelihood ratio test. 2 > 1 means the model with two profiles fitted the data better than the model 
with one profile.
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the minimum at the model with four profiles. aLMR was not statistically significant 
when the number of profiles was greater than three, indicating that the model with 
four profiles was not superior to the model with three profiles, which was superior 
to the model with two profiles. BLMRT was significant for all models and not useful 
for determining the appropriate number of profiles. Thus, a model with three or four 
profiles might be the best solution. Further inspection found that the model with four 
profiles arbitrarily split a profile in the three-profile model into two smaller profiles 
that were close in all debugging variables. This indicated that the four-profile model 
did not provide more insights than the three-profile model. The entropy of the three-
profile model was 0.702, indicating an acceptable classification quality (Muthén, 
2004). Based on these methodological and content considerations, we adopted the 
three-profile model.

Figure 2 displays the z-standardized mean scores of debugging variables to illus-
trate the three debugging profiles. Profile A was the largest one (N = 323; 52.69% of 
the sample) and was characterized by high debugging success rates and short debug-
ging time in all types of errors. Thus, this profile was labeled Higher Performance. 
Profile B (N = 173; 28.22% of the sample) was characterized by low debugging suc-
cess rates and long debugging time for test errors. We labeled this profile Lower Test 
Performance. Profile C (N = 117; 19.09% of the sample) was characterized by low 
debugging success rates and long debugging time for checkstyle and compiler errors 

Fig. 2 Average variable z-scores of the three profiles in phase one. Note. A point represents the average 
z-score per variable for each profile. DSR: debugging success rate for a type of error. DT: debugging 
time for one error. Change rate: mean absolute change rate in code size. Multiple-edit rate: when the 
first submission has more than one syntax error, the probability that a student edited multiple error 
places, no matter fixing them or not.
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as well as high change rates in code size. As both checkstyle and compiler errors 
were about syntax, we labeled this profile Lower Syntactic Performance and Higher 
Change Rate.

Note that we used lower and higher rather than low and high in profile names. The 
reason was that all students in this study were novices in debugging. The character-
istics of each profile were relative to the other profiles. Using low and high in profile 
names may overstate the meanings of profiles. Indeed, the Higher Performance pro-
file’s variable means at the raw scale (Table 3) suggested that students in this profile 
had much room for improvement. For instance, this profile’s debugging success rate 
for test errors was 0.54, indicating that, on average, students needed two submissions 
to fix a test error.

At the raw scale, profiles’ differences in debugging success rates were moderate. 
However, the differences in debugging time were large. On average, the time for fix-
ing a checkstyle or syntax error in profile A was half of that in profile C. The time for 
fixing a test error in profile A was three fifths of that in profile B. Such differences 
suggest that all profiles might be able to fix errors that they encountered, but profiles 
B and C might use a time-inefficient approach.

5.2 RQ2: Prediction of debugging profiles by background variables

Table 4 presents the results of the latent variable multinomial logistic regression 
that examined the relationship between background variables and debugging profile 
membership. Three effects were statistically significant and are shown in bold in the 
table. The odds of belonging to profiles A vs. B for male students were 2.73 times the 
odds for female students. The odds of belonging to profiles A vs. B increased 1.60 
times when the self-rated programming ability increased by one unit. The odds of 
belonging to profiles A vs. C increased 2.04 times when the self-rated programming 
ability increased by one unit.

Major, grade, and time commitment did not predict debugging profile member-
ship. Language familiarity had a seemingly strong effect on debugging profile mem-
bership. For example, the odds of belonging to profiles A vs. B for students familiar 
with Java were 24.30 times the odds for students unfamiliar with any programming 
language. However, these effects had large standard errors and were not statistically 
significant. Thus, we considered the effect of language familiarity null.

Table 3 Profiles’ means and standard deviations at the raw scale of each variable
Profile DSR

Check
DSR
Syntax

DSR
Test

DT
Check

DT
Syntax

DT
Test

Change
rate

Multiple-
edit rate

A 0.88 
(0.08)

0.85
(0.09)

0.54 
(0.14)

0.50 
(0.17)

0.56
(0.21)

2.82 
(0.97)

0.08 
(0.03)

0.44 
(0.19)

B 0.85 
(0.06)

0.81
(0.07)

0.40 
(0.08)

0.80 
(0.29)

0.87
(0.28)

4.64 
(1.61)

0.07 
(0.02)

0.42 
(0.11)

C 0.80 
(0.11)

0.77
(0.10)

0.49 
(0.12)

1.12 
(0.53)

1.20
(0.55)

3.92 
(1.48)

0.10 
(0.04)

0.38 
(0.19)

Note. The unit of time is minutes. DSR: debugging success rate for a type of error. DT: debugging time 
for one error. Profiles A, B, and C: Higher Performance, Lower Test Performance, as well as Lower 
Syntactic Performance and Higher Change Rate.
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5.3 RQ3: Exam performance by debugging profiles

Figure 3 depicts the model that we used to test the differences in exam scores between 
different debugging profiles. The effect of background variables on exam scores was 
controlled and not of interest. The focus was the effect of debugging profiles on exam 
scores. First, we applied model 1, where the three exam scores were only correlated. 
Table 5 presents the results. Profiles B and C had no difference in any exam. Profile 
A had higher scores in all exams than the other profiles, with medium to large effect 
sizes (Cohen’s d = 0.55 ~ 1.02). The differences between profile A and the other pro-
files were larger in the second exam than in the first exam. This raised the question 
of whether their score differences grew larger between the first and second exams.
To investigate this question, we applied model 2 in Fig. 3, where the second and 

third  exam  scores  were  regressed  on  the  first  exam.  Table 6 displays the results. 
With the first exam score being controlled, profile A and the others still had differ-
ences in the second and third exams, with a small to medium effect size (Cohen’s 
d = 0.42 ~ 0.76).  The  results  suggest  that  profiles’  differences  in  exam  performance 
persisted over the course and might enlarge after the first exam.

5.4 RQ4: Debugging profile transitions

Results in this section are about the debugging profiles in phase two (between the first 
and second exams) and phase three (after the second exam) as well as profile transi-
tions from phases one to three. Based on the same procedure in Sect. 4.1, we adopted 

Table 4 Results  of  multinomial  logistic  regression  for  the  effects  of  predictors  on  debugging  profile 
membership

Profiles A vs. Ba Profiles A vs. Ca Profiles B vs. Ca

Predictor β (SE) OR β (SE) OR β (SE) OR
Genderb 1 (0.33)** 2.73 0.5 (0.34) 1.64 -0.51 (0.35)0.60
CSc 0.28 (0.41) 1.32 0.7 (0.52) 2.02 0.43 (0.56) 1.54
CS +c 0.01 (0.36) 1.01 -0.32 (0.36) 0.72 -0.33 (0.4) 0.72
Graded 0.52 (0.47) 1.68 0.21 (0.42) 1.23 -0.31 (0.44)0.73
Ability 0.47 (0.18)** 1.60 0.71 (0.21)** 2.04 0.24 (0.25) 1.28
Otherse 2.21 (2.32) 9.14 2.48 (2.22) 11.88 0.26 (0.53) 1.30
Javae 3.19 (2.3) 24.30 2.47 (2.21) 11.81 -0.72 (0.62)0.49
Java and otherse 3.38 (2.31) 29.26 3.13 (2.22) 22.87 -0.25 (0.62)0.78
Commitment:
5 to 10 hoursc

-0.36 (0.46) 0.70 0.21 (0.44) 1.24 0.57 (0.5) 1.77

Commitment:
> 10 hoursc

-0.25 (0.34) 0.78 0.15 (0.32) 1.16 0.4 (0.39) 1.49

Note. Profiles A, B, and C: Higher Performance, Lower Test Performance, as well as Lower Syntactic 
Performance  and  Higher  Change  Rate. β:  unstandardized  coefficient.  SE:  standard  error.  OR:  odds 
ratio of another profile to the reference profile. Positive coefficients (or OR > 1) indicates that the higher 
the value of the variable, the less likely it is to be in the reference profile. a: The reference profile. b: 
Dummy variables with female = 0. c: Dummy variables with the group of non-CS-related majors = 0.  d: 
Dummy variables with first-year students = 0. e: Dummy variables with the group unfamiliar with any 
language = 0. f: Dummy variables with the group that committed less than 5 h per week = 0.
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a three-profile solution for the data of phase two and a two-profile solution for the 
data of phase three (the Appendix provides a detailed justification for using these 
solutions). The three debugging profiles in phase two were close to the three profiles 
in phase one (the left plot in Fig. 4). Profile A (35.90% of the sample) in phase two 
showed high debugging success rates and short debugging time in all types of errors, 

Table 5 Equality tests of exam scores by debugging profiles in model 1
Exam Adjusted mean (SD) Difference & Cohen’s d

Profile A Profile B Profile C Profiles A vs. B Profiles A vs. C Profiles B vs. C
E1 80.56 (9.79) 71.94 

(13.92)
74.68 
(12.75)

8.62***0.75 5.88**0.55 -2.74 -0.20

E2 87.33 
(13.38)

71.64 
(18.22)

76.42 
(16.57)

15.69***1.02 10.92***0.76 -4.77 -0.27

E3 88.52 
(13.98)

76.44 
(17.38)

79.65 
(16.56)

12.09***0.79 8.87**0.60 -3.22 -0.19

Note. The means of exam scores were under the condition of adjusting the effect of background 
variables. Profiles A, B, and C: Higher Performance, Lower Test Performance, as well as Lower 
Syntactic Performance and Higher Change Rate.

Table 6 Equality tests of exam scores by debugging profiles in model 2
Exam Adjusted mean (SD) Difference & Cohen’s d

Profile A Profile B Profile C Profiles A vs. B Profiles A vs. C Profiles B 
vs. C

E2 33.81 
(10.72)

23.73 
(16.69)

26.76 
(14.43)

10.09***0.76 7.06**0.60 -3.03 -0.19

E3 37.88 
(11.46)

31.09 
(15.92)

32.62 
(14.94)

6.80**0.51 5.27*0.42 -1.53 -0.1

Note. The means of exam scores were under the condition of adjusting the effect of background variables 
and the first exam. Profiles A, B, and C: Higher Performance, Lower Test Performance, as well as Lower 
Syntactic Performance and Higher Change Rate.

Fig. 3 Models 1 (left) and 2 (right) for the equality test of exam scores by debugging profiles. Note. 
Dashed lines are only for the purpose of controlling variables and not of interest. Single-headed arrows 
represent regression, while double-headed arrows represent correlations. The arrows from exam 1 to 
exams 2 and 3 (in red) are single-headed in model 2, representing that the influence of exam 1 on exams 
2 and 3 is controlled. These arrows are double-headed in model 1, so the influence is not controlled.
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same as profile A in phase one. This profile also had a higher multiple-edit rate for 
compiler errors than the others, but the difference was smaller than the differences in 
debugging success rates and time. Thus, we labeled this profile Higher Performance, 
same as profile A in phase one. We labeled profile B in phase two Lower Test Perfor-
mance, the same as profile B in phase one, because profile B in phase two (34.60% 
of the sample) was characterized by low debugging success rates and long debugging 
time for test errors. Profile C (29.51% of the sample) of phase two was characterized 
by low debugging success rates and long debugging time for checkstyle and compiler 
errors and labeled Lower Syntactic Performance. In phase two, profile A had higher 
scores in the second exam than profiles B and C (score difference = 5.06 and 9.18, 
Cohen’s d = 0.41 and 0.65, p = 0.047 and 0.001), controlling for background variables 
and the first exam scores. Profiles B and C had no statistically significant difference 
(score difference = 4.12, Cohen’s d = 0.27, p = 0.064).

Profiles A (67.05% of the sample) and B (32.95% of the sample) in phase three had 
a small difference in debugging test errors, change rate in code sizes, and multiple-
edit rate for syntax errors (right plot in Fig. 4). Their main differences were in debug-
ging checkstyle and syntax errors. Profile A had much higher debugging success rates 
and shorter debugging time for these errors than profile B. Thus, we labeled Profiles 
A and B as Higher and Lower Syntactic Performance, respectively. Profile A of phase 
three had higher scores in the third exam than profile B (difference = 4.78, Cohen’s 
d = 0.35, p = 0.013), controlling for background variables and the first exam scores.

Figure 5 depicts how students’ debugging profile memberships changed across 
phases. From phases one to two, students were likely to stay in the same profiles. 
Students in profiles A, B, and C of phase one had 0.59, 0.57, and 0.59 probabilities 
of staying in profiles A, B, and C in phase two, respectively. Students in profile A of 
phase one were more likely to stay in profile A in phase two than transitioning into 
profile B (compared with profile B of phase one, odds ratio = 29.93, p = 0.002; com-

Fig. 4 Average variable z-scores of profiles in phase two (left plot) and phase three (right plot). Note. 
DSR: debugging success rate for a type of error. DT: debugging time for one error. Change rate: mean 
absolute change rate in code size. Multiple-edit rate: when the first submission has more than one 
syntax error, the probability that a student edited multiple error places, no matter fixing them or not.
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pared with profile C of phase one, odds ratio = 4.72, p = 0.02) or profile C (compared 
with profile B of phase one, odds ratio = 20.09, p = 0.004; compared with profile C of 
phase one, odds ratio = 10.79, p < 0.001). Students in profiles B and C of phase one 
had no difference in the probability of transitioning into profile A in phase two. Com-
pared with students in profile C, students in profile B of phase one were more likely 
to stay in profile B in phase two than transitioning into profile C (odds ratio = 3.40, 
p = 0.016).

Students in all profiles of phase two had a good probability of transitioning into 
profile A of phase three (0.87, 0.61, and 0.46 for profiles A, B, and C, respectively), 
possibly because this profile accounted for 67.05% of the sample. Students in profile 
A of phase two were more likely to transition into profile A in phase three (compared 
with profile B of phase two, odds ratio = 4.09, p = 0.003; compared with profile C of 
phase two, odds ratio = 7.50, p < 0.001). Profiles B and C of phase two had no statisti-
cally significant difference in the probability of transitioning into profiles A vs. B in 
phase three (odds ratio = 1.83, p = 0.087).

Overall, students with higher debugging performance in phase one were likely to 
stay in the higher performance profiles over the duration of the course, while those 
with lower performance (no matter whether checkstyle, syntax, or test errors) in 
phase one were likely to stay in the lower performance profiles. Indeed, 60.48% of 

Fig. 5 Transitions among debugging profiles across phases. Note. The height of a box is proportional 
to the percentage of students in the corresponding profile. The thickness of an arrow is proportional 
to the percentage of students in the corresponding transition. For example, the arrow from profile A of 
phase one to profile A of phase two is much thicker than the others, indicating that a large proportion 
of students in profile A at phase one stayed in profile A at phase two.
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students in profile A of phase three were from profile A of phase one, while 72.25% of 
students in profile B of phase three were from profiles B and C of phase one.

6 Discussion

6.1 Debugging profiles, transitions, and exam performance

This study found three distinctive debugging profiles at the beginning of a CS1 
course (phase one), two of which showed lower debugging performance. Profile B 
was weaker at debugging runtime and logic errors (i.e., test errors), while profile C 
was weaker at debugging checkstyle and syntax errors. Prior work found that novices 
had more difficulty in debugging runtime and logic errors than syntax errors (Fitzger-
ald et al., 2008). Thus, we expected that students in profile B would outperform those 
in profile C on exams. However, the two profiles had the same performance on all 
exams. One possible explanation is that language-independent constructs, the cause 
of runtime and logic errors (Pea, 1986), were relatively simple at phase one, the 
beginning of the CS1 course of this study. The proficiency of debugging errors related 
to such simple constructs may not be more critical than the proficiency of debugging 
syntax errors. Indeed, at the end of the course (i.e., phase three), where language-
independent constructs were relatively complicated, the difference in debugging run-
time and logic errors between profiles was small (see the right plot in Fig. 4).

In phase one, profile A had higher debugging performance in all types of errors 
than the other profiles. Profile A’s higher debugging proficiency contributed to higher 
performance in the first exam. This was expected because better debugging success 
rate and speed helped students solve problems more quickly and effectively. What is 
more interesting is that the difference in the first exam between profile A and the oth-
ers persisted in the second and third exams, even when the first exam’s performance 
was controlled. Results about debugging profile transitions over the duration of the 
course may provide an explanation for this result. Compared with others, students in 
profile A of phase one were more likely to transition into profiles with higher debug-
ging performance in phases two and three. These higher performance profiles also 
outperformed the other profiles on exams of the corresponding phase.

Students in different profiles showed differences in debugging strategies. In phase 
one, profile C had higher change rates in code size. In phase two, profile A showed 
higher multiple-edit rate for syntax errors. Nevertheless, the differences in debug-
ging strategies were smaller than differences in debugging success rates and time, 
indicating that the debugging strategies captured from the programming trace data 
were less useful in distinguishing novices in the current study. The reason might be 
that debugging strategies have weak relationships with debugging performance (i.e., 
debugging success rates and time). For instance, in phase one, the average absolute 
Pearson correlation between change rates in code size and debugging performance 
variables was 0.06, and the range of the absolute correlation was 0.02 to 0.13. The 
average absolute correlation for multiple-edit rate for syntax errors was 0.09, and the 
range was 0.04 to 0.21. By contrast, the average absolute correlation among debug-
ging performance variables was 0.28, and the range was 0.13 to 0.61. The weak cor-
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relation between debugging strategies and performance suggests that novices may 
not apply these strategies effectively or that they may not intentionally apply these 
strategies, given that these strategies were not emphasized in the course.

Students in this study rarely used print statements. This is inconsistent with prior 
studies (Fitzgerald et al., 2010; Murphy et al., 2008; Whalley et al., 2021b). The rea-
son may be that the task in the current study was different from prior studies, where 
participants located and fixed errors of particularly designed buggy programs. In the 
current study, students debugged their own programs. Because students might already 
be familiar with their programs, they may have been less likely to use print statements 
to trace their codes. The difference between current and prior studies matches prior 
findings that novices used different approaches when debugging their own programs 
versus others’ programs (Katz & Anderson, 1987). These results together call for cau-
tion on generalizing findings between participants debugging their own programs and 
debugging others’ programs.

6.2 Background variables and debugging profiles

Self-rated programming ability predicted debugging profiles in phase one. The higher 
a student self-rated their programming ability, the more likely they were to belong 
to profile A (Higher Performance). This is expected because students with high pro-
gramming ability might have good domain and system knowledge and programming 
experiences, which are helpful for debugging (Li et al., 2019). However, this result 
was unexpectedly strong. The odds of belonging to profiles 1 vs. 2 for students with 
the highest programming ability (i.e., 5) was 10.49 times the odds for students with 
the lowest programming ability (i.e., 1), and the odds ratio of belonging to profiles 
1 vs. 3 between the two groups was even larger, increasing to 35.33. The strong 
effect was partially inconsistent with prior findings that good programmers are not 
necessarily good debuggers (Ahmadzadeh et al., 2005; Fitzgerald et al., 2008). A 
possible explanation is that debugging performance was evaluated differently in prior 
studies compared to the current study. Prior work evaluated debugging performance 
based on students’ final solutions for buggy programs and human observations of 
the processes generating the solution, which provided finer and more comprehensive 
information about debugging ability than the current study. Thus, the current study 
may not fully capture students’ debugging ability due to the limited information of 
submission traces.

Gender predicted novices’ debugging performance at phase one. This is unsurpris-
ing because gendered disaprities are known in CS1 (Lewis et al., 2019). Women’s 
underrepresentation in CS has long existed, and gendered CS stereotypes is prevelan-
tent. Girls may be less likely to participate in CS learning opportunities due to lower 
expectations from teachers and parents. What was unexpected is that the gendered 
difference in debugging performance mainly existed in test errors. Compared with 
female students, male students were more likely in profile A (Higher Performance) 
versus profile B (Lower Test Performance). However, when profile C (Lower Syn-
tactic Performance and Higher Change Rate) was the reference group, female and 
male students had the same probability of belonging to profile A. Prior work found 
that male and female students applied different strategies during debugging (Subrah-
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maniyan et al., 2008). In the current study, male and female students might employ 
debugging strategies differentially in ways not captured by our analyses, resulting in 
different performance in debugging test errors. Nevertheless, further investigation 
needs to replicate this result and, if it can be replicated, explore what kinds of debug-
ging strategies cause the difference in debugging performance.

It is interesting that language familiarity did not predict debugging profiles. Stu-
dents who reported familiarity with Java (groups of Java as well as Java and others) 
should have more domain knowledge of debugging than those unfamiliar with any 
programming language in the current study (group none). We expected that groups 
of Java as well as Java and others would be more likely to belong to profile A than 
group none. One possible explanation is that debugging entails various knowledge 
and skills (Decasse & Emde, 1988). Groups with prior expertise with Java, as well as 
Java and others, might not be better than group none in the system knowledge, proce-
dural knowledge, and debugging strategies (Li et al., 2019). Overall, the results sug-
gest that it may be better to not adapt debugging instruction to language familiarity, 
current grade level, or major, as none of these factors predicted profile memberships.

Students’ expected time commitment was also unrelated to debugging profiles. 
The reason may be that their actual time investment did not match their expected 
commitment. Alternatively, most of their time effort might be spent on learning about 
computing concepts and Java language, given that debugging was not emphasized in 
the course.

6.3 Implications

In this study, novice programmers had both quantitative and qualitative differences 
in debugging performance and strategies at the beginning of the course. The dif-
ference in debugging extended to exam performance, and the difference in exam 
performance increased from the first to second exam. These results support the call 
for teaching debugging explicitly and early (Chmiel & Loui, 2004; Li et al., 2019; 
Michaeli & Romeike, 2019). Debugging is a frustrating process for novices (Whalley 
et al., 2021b). Frequent unsuccessful debugging may damage self-efficacy, causing 
persisting and enlarged programming and debugging disparities. At the early stage of 
CS1, explicitly teaching some debugging strategies may help novices locate and fix 
programming errors, reduce negative affective experiences, and facilitate learning.

Nevertheless, debugging is a complex skill. At the early stage of CS1, novices 
are weak at programming language knowledge and language-independent constructs 
and lack the knowledge base of stereotyped bugs and their symptoms. Thus, even 
equipped with debugging strategies, novices may still find debugging challenging. 
Researchers may consider using scaffolding to reduce the difficulty of debugging. 
For instance, programming error messages are usually vague, unclear, and hard to 
read (Becker et al., 2019). Improving the usability and readability of error messages 
may facilitate efficient and successful debugging (Denny et al., 2020). In addition, 
the source of test errors is difficult to identify. As such, it may be useful to provide 
students with explicit guidance about how to apply debugging strategies to help them 
identify the source of an error. Of course, as novices’ knowledge and skills grow, it is 
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necessary to fade the scaffolding so that the novices can practice debugging opportu-
nities in a more authentic environment.

Additionally, novices often find error messages frustrating and discouraging 
(Becker et al., 2016). Researchers and instructors may consider adding positive infor-
mation to error messages to motivate students, such as praising achievements when 
errors are fixed and providing motivation when the same errors persist (Marwan et 
al., 2020). Such attempts may not only support the debugging process but also culti-
vate students’ belief of “debugging as productive failure” (Kafai et al., 2019).

6.4 Limitations and future directions

The web-based learning system in this study did not have debugging functions com-
mon in IDEs, such as break point and memory inspection. With such functions and 
instruction on utilizing them, students might have better debugging performance. 
Additionally, the programming language was Java, which typically has no code style 
requirement. However, the instructor required a certain code style, and violating the 
requirement in this study would result in checkstyle errors. Such errors may not be 
common in Java programming courses. Thus, the current result may not generalize to 
an environment with debugging functions and without code style requirements. Future 
work should be undertaken to investigate novices’ debugging differences in different 
environments and whether the differences are consistent across environments.

This study examined the transitions among debugging profiles during the course. 
However, it was not a direct investigation of how students’ debugging abilities grew 
over time. We were unable to do this because the programming assignments became 
increasingly difficult and complex. The debugging performance measures we cal-
culated based on the assignment-solving process would be uncomparable across 
assignments at different phases of the course. Further studies might design debugging 
tasks and present them to novices at different phases of CS1 courses to investigate 
the development of novices’ debugging abilities. Such investigation may not only 
improve conceptual understanding of the development but also assist in developing 
best practice for instruction. For example, without instruction on debugging strate-
gies, the debugging performance may still grow at the early phase of CS1 because 
of the growth in programming abilities. However, without explicit instruction, the 
growth in debugging may plateau. Teaching debugging strategies early fits students’ 
timely needs, and thus, it is worth identifying when the plateau arrives in future 
studies.

7 Conclusion

The current study conducted a person-centered investigation of debugging in a CS1 
course. Combining programming traces and LPA, we identified three distinctive 
debugging profiles at the beginning of the course. Profile A showed higher debug-
ging accuracy and speed. Profile B showed lower debugging performance in runtime 
and logic errors, while profile C had lower performance in syntactic errors and tended 
to make large code edit every submission. Students’ gender and self-rated program-
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ming ability predicted profile membership. Moreover, profile A got higher scores 
than the others in the first exam, and this difference persisted in the second and third 
exams. Latent transition analysis found that a large part of students stayed in lower 
debugging performance profiles over time. Overall, these findings support the call 
that debugging should be taught at an early stage and provide guidance for personal-
ized debugging instructions.

8 Appendix

Table A1 presents the statistical fit indices and tests for LPA models for the data of 
phase two. Models with four and six profiles did not converge, and their fit indi-
ces could not be obtained. CAIC and SABIC decreased as the number of profiles 
increased. BIC reached the minimum at the model with three profiles. aLMR was 
statistically insignificant when the number of profiles was greater than two, indicat-
ing that the model with three profiles was not superior to the model with two profiles. 
BLMRT was significant for all models and not useful for determining the appropri-
ate number of profiles. Thus, a model with two or three profiles might be the best 
solution. Further inspection found that the model with three profiles included three 
distinctive profiles. This indicates that the model with three profiles provided more 
insights than the model with two profiles. Besides, the three profiles in phase two 
were close the three profiles in phase one. Thus, we adopted the three-profile solution 
for the data of phase two.
Table A1 Model fit statistics for the data of phase two (between the first and second exams)
Model # FP LL CAIC BIC SABIC aLMR p and 

meaning
BLRT p and 
meaning

Entropy

1 44 -6488.61 13072.23 13259.42 13119.73 NA - -
2 61 -6322.82 12781.45 13036.87 12843.20 0.024 2 > 1 0.000 2 > 1 0.647
3 78 -6247.55 12674.30 12995.34 12747.71 0.119 3 > 2 0.000 3 > 2 0.606
5 112 -6147.51 12569.94 13013.32 12657.74 0.126 5 < 4 0.000 5 > 4 0.695

Table A2 presents the statistical fit indices and tests for LPA models for the data of 
phase three. Like Table A1, Table A2 suggests that a model with two or three profiles 
might be the best solution. However, further inspection found that the model with 
three profiles split a profile in the model with two profiles into one large (59.4%) 

Table A2 Model fit statistics for the data of phase three (after the second exams)
Model # FP LL CAIC BIC SABIC aLMR p and 

meaning
BLRT p and 
meaning

Entropy

1 44 -6541.07 13177.27 13363.69 13224.00 - - -
2 61 -6274.34 12684.72 12939.00 12745.34 0.000 2 > 1 0.000 2 > 1 0.706
3 78 -6170.01 12519.62 12839.10 12591.47 0.146 3 > 2 0.000 3 > 2 0.727
4 95 -6101.41 12428.93 12810.68 12509.08 0.538 4 < 3 0.000 4 > 3 0.692
5 112 -6054.85 12385.57 12826.34 12470.77 0.334 5 < 4 0.030 5 > 4 0.695
6 129 -6018.75 12366.71 12862.91 12453.37 0.002 6 < 5 0.148 6 < 5 0.729

1 3



Education and Information Technologies

and one small profiles (7.32%), which only had statistically significant difference in 
debugging time for test errors (the smaller profile showed shorter time). Given the 
greatly unbalanced profile sizes, we think that the two profiles were not distinctive 
in a meaningful way. The model with three profiles might just select those with short 
debugging time for test errors and group them into a profile. Thus, we adopted the 
two-profile solution for the data of phase three.
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