
Investigating the Relationship Between
Programming Experience and Debugging

Behaviors in an Introductory Computer Science
Course

Juan D. Pinto1(B), Qianhui Liu1, Luc Paquette1, Yingbin Zhang2,
and Aysa Xuemo Fan1

1 University of Illinois Urbana-Champaign, Champaign, IL 61820, USA
jdpinto2@illinois.edu

2 South China Normal University, Guangzhou Guangdong 510631, China

Abstract. Debugging is a challenging task for novice programmers in computer
science courses and calls for specific investigation and support. Although the
debugging process has been explored with qualitative methods and log data anal-
yses, the detailed code changes that describe the evolution of debugging behaviors
as students gain more experience remain relatively unexplored. In this study, we
elicited “constituents” of the debugging process based on experts’ interpretation of
students’ debugging behaviors in an introductory computer science (CS1) course.
Epistemic Network Analysis (ENA) was used to study episodes where students
fixed syntax/checkstyle errors or test errors. We compared epistemic networks
between students with different prior programming experience and investigated
how the networks evolved as students gained more experience throughout the
semester. The ENA revealed that novices and experienced students put differ-
ent emphasis on fixing checkstyle or syntax errors and highlighted interesting
constituent co-occurrences that we investigated through further descriptive and
statistical analyses.

Keywords: Computer Science Education · Debugging · Programming
Experience · Epistemic Network Analysis · CS1

1 Introduction

Debugging is an important component of computer programming where students “find
out exactly where the error is and how to fix it” [1]. Different from general programming
ability, debugging skills cannot be immediately obtained from writing code [2] and thus
deserve individual pedagogical attention [1]. Novice programmers often find debug-
ging difficult for two main reasons. First, successful debugging requires a wide range
of knowledge—including general programming expertise and knowledge of debugging
methods—that novice programmers may not possess [3]. This deficiency of debugging
knowledge and strategic skills often hinders students from controlling the program-
ming process [4]. Second, the process of debugging often happens outside of class, so

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
G. Arastoopour Irgens and S. Knight (Eds.): ICQE 2023, CCIS 1895, pp. 125–139, 2023.
https://doi.org/10.1007/978-3-031-47014-1_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-47014-1_9&domain=pdf
https://doi.org/10.1007/978-3-031-47014-1_9

126 J. D. Pinto et al.

instructors have limited opportunities to directly support students when they encounter
difficulties and misconceptions [5].

Epistemic Network Analysis (ENA) is a technique that detects and measures associ-
ations between coded data elements and represents the associations through a dynamic
network [6]. It allows researchers to visually and statistically compare different groups’
networks. ENA can be applied to understand students’ debugging processes by reveal-
ing the associations between debugging behaviors within a window slice and how these
associations differ in student groups.

In this study, we used ENA in an introductory computer science (CS1) course to
investigate the relationship between computer programming experience and debugging
behaviors. To achieve this, we elicited what we called “constituents” of the debug-
ging process—i.e., binary variables deduced from expert observations. Each constituent
was operationalized based on how experts interpret students’ debugging behaviors and
was computed on the code submissions. We investigated debugging behaviors for two
types of debugging episodes in which students attempted to fix different types of errors:
syntax/checkstyle errors or test errors. ENA point plots and networks were created to
explore the difference between students with and without prior experience, and to inves-
tigate how debugging behaviors evolved as students gained more experience over three
different times periods of the semester. Our ENA highlighted interesting constituent
co-occurrences that we investigated through further descriptive and statistical analyses.

Specifically, we asked the following research questions:

1. Howdoes the use of ENAallow us to better understand students’ debugging behaviors
when solving computer programming problems?

2. How does the debugging behavior of students differ based on their prior computer
programming experience?

3. How does debugging behavior evolve over the duration of the semester, as students
gain more computer programming experience?

2 Related Work

2.1 Debugging

Students’ debugging processes have been investigated through qualitative studies based
on think-aloud transcriptions [7], grounded theory [8], interviews [9], and researcher
coding [1]. These studies have identified insightful debugging challenges and concepts,
such as barriers students encountered corresponding to different debugging phases [7]
and debugging strategies articulated by students [8, 9] or experts [1].

Other studies have focused on revealing debugging behaviorswith log data.Although
programming processes have been modeled from different perspectives such as code
updates [10] and program state transitions [11], limited studies have focused on specif-
ically analyzing debugging processes using log data. Ahmadzadeh et al. [12] distin-
guished groups of good and weak debuggers based on how well they corrected logical
bugs.While the study included statistical results, students’ debugging behaviorswere not
analyzed quantitatively to explain differences in their performance. Jemmali et al. [13]
considered both error states and programming actions in debugging sequence analysis.
However, they only considered four levels of codemodifications (no/small/medium/large

Investigating the Relationship Between Programming Experience 127

change) and provided limited interpretations of debugging patterns. Since debugging
involves a variety of knowledge and skills, debugging processes should be described
with more detailed code-changing behaviors instead of simply how much the code has
been changed.

2.2 ENAWith Process Data

ENA has been applied to various types of educational process data [14], such as action
logs [15, 16], coded discourse [17, 18], and affect observations [19]. Although the orig-
inal ENA methods do not account for sequential order among learning events, they can
extract features from process data that have predictive power on learning performance
no worse than sequential analysis methods [18]. Recently, directed ENA has been devel-
oped to capture sequential information among learning events [20], and it has shown
promise in dissecting MOOC learning tactics [21].

Many studies have used ENA to uncover the co-occurrence patterns among self-
regulated learning behaviors [15–17] and to understand collaborative learning processes
[17, 18]. Researchers have also utilized ENA in the field of computing education [22–
24]. Particularly, Hutchins et al. [23] applied ENA to understand high school students’
debugging process during block-based programming. Their result showed that a group
characterized by tinkering and evaluation debugging strategies was better at integrating
physics and computational thinking concepts than a group characterized by multiple
code construction actions without testing.

3 Learning Context

In this study, we analyzed data collected from an undergraduate CS1 course in Java at
a Midwestern public university. Students used an online auto-grading system to com-
plete homework, quiz, and exam questions throughout the semester. The course included
two large midterms, naturally dividing the semester into three periods. Homework was
assigned almost every day, and students could submit unlimited attempts to the online
system before the midnight deadline. For each submission, the system first checked if
there were any syntax (incorrect Java code) or checkstyle (the code did not follow course
specific formatting rules) errors. If so, the system would provide error messages. Other-
wise, the platform ran a set of problem-specific test cases to evaluate the submission’s
correctness. The test cases returned information about the first encountered error or no
error message if all cases passed.

3.1 Data

Submission log data of 745 students solving 69homeworkquestionswas collected during
the Fall 2019 semester. Each student made an average of 7.49 submissions per question.
For each submission, the online learning system recorded the student’s submitted code,
submission time, and any syntax, checkstyle, or test error messages. Students also com-
pleted a pre-course survey providing demographic information and self-reported prior

128 J. D. Pinto et al.

experience in programming. Thirty-one percent of the students were female. We inves-
tigated two questions related to the students’ prior programming experience. The first
one asked which programming languages students were familiar with. We grouped the
possible answers into four categories—Java, Java+ (Java and at least one other), other,
or none—because we assumed that students with Java experience may learn differently
in this introductory Java course. The second question asked students to self-rate their
programming abilities on a range from 1 (lowest) to 5 (highest).

3.2 Eliciting Constituents

Process log data, such as code submissions, contain rich information that can be used
to better understand students’ debugging behaviors. However, log data first needs to be
pre-processed to compute features that summarize debugging behaviors and filter out
irrelevant information. To identify relevant and interpretable features, we elicited binary
“constituents” of experts’ interpretation of debugging behaviors, each operationalizing
an element of debugging behavior that experts identified as meaningful.

We identified constituents using a similar method to the one used by Paquette, de
Carvalho,&Baker [25]. The elicitation process involved conducting interviewswith pro-
gramming experts and extracting relevant components of their interpretation of students’
code submissions. This section provides an overview of the expert interview process and
describes how we identified a specific set of constituents for our study.

We recruited two programming experts, both computer science graduate students
with a research focus on computer science education who also had prior teaching or
tutoring experience. These experts were expected to possess a deep understanding of
Java programming concepts and be familiar with common student misconceptions and
debugging strategies. Both experts were presented with the same set of pre-selected
examples of student problem solving submissions and were asked to comment on how
students approached solving the problems and the debugging strategies they employed.
In total, the first expert commented on 20 problems for a duration of 6.18 h, and the
second expert commented on 24 problems for a duration of 9.82 h.

To identify key constituents of the experts’ interpretations, we first constructed a
flowchart representing their approach to interpreting code submissions, based on the
recurring themes identified from the interview recordings. The flowchart was reviewed
to identify missing components from the experts’ interpretation approach, which lead
to further review of the interviews. Through this iterative process, we generated a com-
prehensive list of constituents that captured the essence of the experts’ interpretation.
Finally, we computed these constituents from the code submission data.

Table 1 presents a list of all the constituents used in the analyses presented in this
paper. These constituents represent various aspects of the debugging process, including
changes to the submitted code and progress towards fixing errors. It is important to note
that some of the elicited constituents, such as the use of print statements, were excluded
from our analyses.While print statements can be used during debugging, some problems
(especially early in the semester) required students to use print statements as part of the
solution. The constituents were removed from the analyses to avoid confounding print
statements that were part of the solution with those that were used for debugging.

Investigating the Relationship Between Programming Experience 129

Table 1. Debugging constituents based on the experts’ interpretation.

Constituents Operationalization

massive deletion The student deleted 4 or more lines of code, and
at least 30% of all the lines from the previous
submission were deleted

submission undo This is not the first submission, and the code is
the same as a submission at least 2 submissions
back

deleted line w/ error At least one line with a checkstyle/syntax error
from the previous submission was deleted

modified line w/ syntax error At least one line with a syntax error from the
previous submission was modified

changed var name The name of a variable was modified

repeated change At least one identical change
(deletion/addition/modification) was made on
multiple lines. E.g., submission added the same
word on two or more lines

ignored checkstyle but addressed
syntax

Lines with syntax errors in previous submission
were altered but lines with checkstyle errors
were not

reduced syntax errors The current submission has less total syntax
errors than the previous submission

reduced checkstyle errors The current submission has less total checkstyle
errors than the previous submission

change in test error The provided test error for the current
submission is different than the test error that
was provided from the previous submission

new error The current submission is not the first and has at
least 1 error that was not present in the
immediately preceding submission

repeated new error At least 1 error identified as new (new error)
is the same as one of the errors in the previous
submissions

4 Epistemic Network Analysis

4.1 Methods

Data Preparation. To focus our analyses on how students debugged specific types of
errors, we split our data into debugging episodes that exclusively kept submissions with
either syntax/checkstyle errors or test errors. We settled on this approach after a pilot
study revealed interpretation issues when keeping all error types together. This is due

130 J. D. Pinto et al.

to the design of the learning platform, which only ran problem-specific tests when no
syntax/checkstyle errors were present.

In addition, because debugging is a process that unfolds over multiple steps, students
who solved problems in few attempts may not be provided with adequate opportunities
to demonstrate their debugging process. As such, only episodes with a number of sub-
missions in the 75th percentile or above were included, with a minimum submission
threshold of 5 for syntax/checkstyle error episodes and 6 for test error episodes.

We calculated the constituents separately for each episode.We also included relevant
grouping data to make our analysis possible: answers to survey questions about prior
programming ability and experience with programming languages, as well as informa-
tion about which third of the semester each problem was assigned to. For each set of
episodes, we removed constituents that were not relevant to its type of error. For exam-
ple, change in test error was not relevant to syntax/checkstyle errors, whereas
reduced checkstyle errors was not relevant to test errors.

Table 2. Number of debugging episodes for each grouping.

Programming language (T1) Prior ability (T1) Time

None Other Java Java+ 1 2 3 4 5 T1 T2 T3
syntax/

checkstyle 832 954 520 1260 804 1357 1064 289 52 3576 4756 4439

test 174 491 237 273 209 413 403 133 17 1178 1485 3191

Epistemic Network Analysis. ENA was conducted using the rENA package [26]. We
compared the networks obtained using two different window sizes (2 and 3) and found
no meaningful differences. We therefore decided to use a window size of two for our
analyses, which we reasoned would be easier to interpret as co-occurrences would be
from either immediately adjacent submissions or from the same submission.

We created ENA point plots and networks for each type of debugging episode for
each grouping dimension. We also created a separate mean epistemic network for each
group, as well as plots showing the difference between pairs of mean group networks.
Welch t-tests (Table 3) were conducted to identify statistically significant differences
between networks. Table 2 provides detailed information about the number of data
points included in each grouping. Since each of our grouping categories included more
than two groups, we used singular value decomposition rather than means rotation.

When preparing the plots for prior programming ability and prior language experi-
ence groupings, we kept only problems that were part of the first third of the semester
(T1).We reasoned that prior experiencewould have themost impact on debugging behav-
iors of students early on, but that this effect would decrease with in-course experience,
which may equalize students with different prior levels of experience.

This series of plots allowed us to analyze the various co-occurrences between con-
stituents, allowing us to answer our research questions on the impact of experience on

Investigating the Relationship Between Programming Experience 131

Table 3. Results of Welch t-tests for previously known languages (top), starting programming
abilities (left), and semester time (right). In each cell, syntax/checkstyle debugging episodes are
on top and test debugging episodes on bottom in italics. *p < 0.05, **p < 0.01, ***p < 0.001.

Language
Java+ Java Other

A
bi

lit
y

2 1.34
0.58

6.56***

1.48
4.22***

1.04
2.60**

0.51 None

3 3.53***

0.23
2.55*

0.43
0.86
0.16

3.90***

0.97 Java+

4 4.28***

0.97
3.61***

0.59
1.96
0.89

2.15*

0.61 Java 20.17***

3.25** T1

Sem
ester

tim
e

5 2.72**

0.91
2.39*

1.12
1.72
1.00

0.85
1.31

18.71***

4.10***
1.51
0.47 T3

1 2 3 4 T1 T2

debugging practices. We also used ENA to identify follow-up questions that warranted
further exploration of our data.

4.2 Results

Prior Experience. We compared the debugging-related actions in the first third of
the semester (T1) of students with different levels of prior experience. We found that
the epistemic networks for students subdivided by either previously known programing
languages or self-reported experience level yielded very similar trends—that is, students
with lower self-rated ability followed the same general debugging patterns as those with
little or no prior knowledge of programming languages when compared with those who
either rated their abilities higher or had more experience with languages such as Java.
This raised the question of how often these two survey dimensions intersect, which we
explored further in a second round of analysis (Follow-Up Question 1).

Debugging Syntax/Checkstyle Errors. Themean networks for syntax/checkstyle debug-
ging episodes revealed that, along the x-axis, checkstyle-focused constituents were
located on the left, whereas syntax-focused constituents were on the right, and con-
stituents related to general code edits were closer to the center (Fig. 1, left). Overall,
the epistemic networks for novice students were more heavily weighted on the right and
more experienced students more on the left, across both starting ability level and previ-
ously known languages (Fig. 1, right). Together, these observations suggest that novice
students showed more co-occurrences of debugging behaviors addressing syntax errors,
whereas more experienced students showed more co-occurrences related to checkstyle
errors.

We found further evidence of this when comparing the mean networks of students
with different levels of prior ability (Fig. 1, left). Experienced students (self-reported

132 J. D. Pinto et al.

Fig. 1. Difference network between ability levels 5 and 1 in first third of semester (left); Means
and confidence intervals across ability levels and prior know languages (right).

ability of 5) had stronger co-occurrences between new error and reduced check-
style errors than novice students (self-reported ability of 1), as well as between
deleted line w/ error and reduced checkstyle errors.

One potential explanation is that experienced students may have simply encountered
less syntax errors and, as such, encountered proportionallymore checkstyle errors. Alter-
natively, experienced students could be addressing both syntax and checkstyle errors
within the same submission. We decided to pursue these questions further in our second
round of analysis (as Follow-Up Question 2) by exploring the distribution of check-
style vs. syntax errors and the order in which students fixed checkstyle vs. syntax errors
(checkstyle>syntax, syntax>checkstyle, or simultaneously).

With novice students, we found the opposite. They had many more co-occurrences
between new error and ignored checkstyle but addressed syntax when
both were present. Echoing some of our previous questions, this could be explained by
experienced students simply making less syntax errors, giving them less opportunities
for this constituent than novice students. There is some evidence for this in the fact that
novice students had more co-occurrences between new error and modified line w/
syntax error than experienced students.

Debugging Test Errors. We again found that the mean epistemic networks for less
experienced students were more heavily weighted on the left and vice versa across
the two dimensions of prior experience (self-rated ability levels and familiarity with
various programming languages). There was one exception where the most advanced
ability level (5) conspicuously did not follow this pattern (Fig. 2, right). However, given
this group’s much larger confidence interval, along with the consistency in the network
graphs between the two experience dimensions aside from this group, we did not include
the advance ability level further in our analyses at this stage, instead choosing to set its
significance aside for later investigation as Follow-Up Question 3.

Investigating the Relationship Between Programming Experience 133

Fig. 2. Difference network between ability levels 4 and 1 for test error debugging (left); Means
and confidence intervals across ability levels and prior know languages (right).

We found that experienced students had more co-occurrences between massive
deletion and change in test error than novice learners. A possible explanation is
that experienced students are more confident in their abilities and make more changes to
the code before submitting. However, this hypothesis should be verified in future studies.

As explained previously, one limitation of our dataset is that only a single test error
can be identified in each submission, whereas all syntax/checkstyle errors are presented.
This means that the new error constituent is only measuring new syntax/checkstyle
errors. In test error debugging episodes, this could only occur in the very last submis-
sion, indicating that a student’s code had no more test errors but introduced new syn-
tax/checkstyle errors. We found that novice students have more co-occurrences between
this action and change in test error than experienced students. This may suggest
that novices are more likely to make new syntax/checkstyle errors while debugging for
test errors, though in this case we’re only capturing that information at the very end of
a test error debugging episode.

Changes Across Semester. Here we report on the variations in debugging patterns that
we observed using ENA to compare students at the beginning (T1), the middle (T2), and
the end (T3) of the semester, regardless of prior experience.

Debugging Checkstyle and Syntax Errors. Flipping the trendwe observed earlier, where
students with more prior experience showed more connections to checkstyle errors, it
appears that, as the semester progresses and they develop more experience with pro-
gramming and the expectations of the course, students increasingly spend more time on
syntax errors and less on checkstyle errors. Figure 3 (left) reveals that the majority of
co-occurrences between new error and reduced checkstyle errors take place
during the first third of the semester. Figure 3 (right) further highlights how different the
early part of the semester is from the latter two thirds.

134 J. D. Pinto et al.

Fig. 3. Syntax/checkstyle debugging episodes. Difference network between semester time 1 and
3 (left); Means and confidence intervals across semester times (right).

The strong co-occurrences in the latter part of the semester with the constituent
ignored checkstyle but addressed syntax suggest that this may not simply
be a case of students making less checkstyle errors, but rather of students consciously
choosing to fix syntax errors first. We explore this further as Follow-Up Question 4.

Fig. 4. Test debugging episodes. Difference network between semester time 1 and 3 (left); Means
and confidence intervals across semester times (right).

Debugging Test Errors. With debugging for test errors, it is the last third of the semester
that stands out as unique (Fig. 4, right). During these later weeks, students have many
more co-occurrences between massive deletion and change in test error. This
is consistent with what we found among more experienced students during the early part
of the semester, suggesting that experience leads to this debugging pattern.

Investigating the Relationship Between Programming Experience 135

The first two thirds of the semester included more co-occurrences between change
in test error and new error than the last third. This is similar to what we found
among novice learnerswhen comparedwithmore experienced ones early in the semester,
suggesting a consistent trend. Because of the nature of our data, this co-occurrence can
be interpreted as students making new syntax/checkstyle errors while debugging a test
error and either giving up or successfully solving the problem without making more test
errors. We explored this further in Follow-Up Question 5.

5 Follow-Up Questions from ENA

The ENA analyses provided insights into the students’ debugging behaviors. It high-
lighted ways in which debugging behaviors varied based on prior programming expe-
riences and how debugging behaviors evolved throughout the semester. However, it
also raised questions that could not fully be answered by examining the co-occurrence
networks by themselves. In this section, we investigate each of these questions.

Follow-Up Question 1. Through our use of ENA, we found that grouping debugging
episodes using the two survey dimensions designed to measure experience provided
very similar observations of debugging behaviors. We asked whether this was because
students who self-rated as more capable were also those who listed prior knowledge
of more programming languages. As part of a follow-up analysis, we calculated the
Spearman’s rank correlation between these two categories and found a moderate rela-
tionship for student in both the syntax/checkstyle error dataset (rs = 0.63, p < 0.001)
and the test error dataset (rs = 0.63, p < 0.001). A confusion matrix revealed, how-
ever, that the majority of students—especially those with experience in Java and other
languages—rated their abilities at the midpoint of 3 (Fig. 5). Because we are interested
in comparing more vs. less experienced students, this neutral option makes it difficult
to categorize students. We found that by removing all students in ability level 3, the
Spearman correlation became stronger in both the syntax/checkstyle and the test error
datasets (rs = 0.71, p< 0.001 and rs = 0.71, p< 0.001, respectively). For the rest of our
follow-up analysis, we define experienced students as those with prior Java experience
(Java or Java+) AND who rated their abilities as either 4 or 5. Similarly, we define
novice students as those with either no prior known programming languages (none) or
with only languages other than Java (other) AND who rated their abilities as either 1 or
2. This fits with how we analyzed these categories during our ENA as well.

Follow-Up Question 2. Another group of questions that arose during ENA were those
regarding the connection between new error and reduced checkstyle errors.
By looking at the frequency at which experienced students simultaneously fixed check-
style and syntax errors (65 times) vs. performing these actions one after the other (310
times), we found that a certain trend we discovered via ENA—that experienced stu-
dents placed more emphasis on checkstyle errors than syntax errors in comparison with
novice students—was not simply a case of simultaneous debugging after all. We also
found that experienced students had a ratio of checkstyle to syntax errors of about 1.71
(1.62 checkstyle and 0.95 syntax errors on average per submission), whereas novice
students had a much smaller ratio of about 0.69 (0.99 checkstyle and 1.43 syntax errors
on average per submission). Since the average number of syntax and checkstyle errors

136 J. D. Pinto et al.

Fig. 5. Confusion matrix for prior ability and prior programming languages for both datasets:
checkstyle/syntax and test debugging (T1 only). Lighter color indicates more instances.

per submission was similar between the groups (2.57 vs. 2.42), such a stark contrast
in ratio seems to confirm that the trend we discovered was due to experienced students
making more checkstyle errors while novices made more syntax errors.

Follow-UpQuestion 3. In our ENA,we found that studentswho self-rated their abilities
as 5 (the highest) did not fit the trend set by the other ability levels. We investigated this
and discovered that, as suspected, these students accounted for a disproportionally small
subset of students (4%). As such, it is unclear whether the unexpected observation that
high-ability students hadmore co-occurrences between submission undo and change
in test error than other students is simply due to the lower sample size.

Follow-Up Question 4. Some trends in our ENA led us to ask whether students made
less checkstyle errors in the latter parts of the semester or if the proportion stayed
the same, but they simply chose more often to ignore these and fix their syntax errors
first. We found that the number of checkstyle errors per submission indeed decreased
drastically after the first third of the semester, going from 1.18 to 0.43, and then only
slightly increased to 0.73.We also found that the number of syntax errors per submission
progressively increased from 1.27 to 1.67 and then to 2.07. These observations reveal
a significant shift in the types of errors that students struggled with as they gained
experienced. They also leave room for an acknowledgement of the shift in debugging
strategy we observed in which students, as they gained experience, more often chose to
focus on syntax errors first, even when they also had checkstyle errors present.

Follow-UpQuestion 5. Our ENA revealed that it wasmore common during the first two
thirds of the semester for students to make a syntax/checkstyle error while debugging
a test error and not receive any more test error messages in that problem. However, it
was unclear if this was because students in these cases fixed both the new errors and
the previous test error simultaneously, or if they simply gave up after the frustration of
encountering a new type of error during the process of debugging. We found that in most
cases—about 92%, regardless of the time in the semester—these students indeed solved
the problem, indicating that they simultaneously fixed both types of errors.

Investigating the Relationship Between Programming Experience 137

6 Discussion and Conclusion

In this study, we elicited and calculated debugging constituents from episodes where
students fixed syntax/checkstyle errors or test errors. We used ENA to compare the
debugging behaviors of students based on their prior programming experience and to
study how debugging behaviors evolved as students gained more programming experi-
ence throughout the semester. Results of our analyses showed how novices and expe-
rienced programmers put different emphasis on fixing checkstyle or syntax errors. The
differences between co-occurrences of debugging patterns in the epistemic networks
we generated raised further questions about the causes of such differences and about
how debugging behaviors may shift as students gain more experience. We highlight our
findings in the following paragraphs.

First, ENA for the two pre-course survey questions (self-rated programming ability
level and previously known programming languages) showed similarities in the debug-
ging behaviors of novice and experienced programmers in the first third of the semester.
Experienced students placed more emphasis on fixing checkstyle errors while novice
students focused more on syntax errors. An analysis of the distribution of syntax and
checkstyle errors showed that this may largely be due to experienced students making
less syntax errors (and proportionally more checkstyle errors). This may be related to
the experienced students’ greater familiarity with the Java language and its syntax and
their lack of knowledge of the checkstyle rules specifically enforced in the course.

Second, as students gained more experience through the semester, they made signif-
icantly less checkstyle errors, causing them to focus more on fixing syntax errors. Even
when they encountered checkstyle errors, they more often chose to tackle syntax errors
first. This may be the result of an increase in problem complexity or the continuous intro-
duction of new concepts with new syntax as the semester progressed. The change in pro-
gramming concepts and problems can create more occasion for making syntax errors or
encourage students to focus first on big problems (syntax errors) and worry about the
details (checkstyle errors) later. During the constituent elicitation interviews, one of the
experts explicitly commented on how students should ignore checkstyle errors until they
fixed all syntax errors. As such, this may be evidence of students learning better debug-
ging strategies with experience. Another potential factor could be the order in which
errors are presented to students. Checkstyle errors are always put above syntax errors, so
studentsmight follow the displayedorder tofix errors in earlier parts of the semesterwhen
still becoming familiar with the system. This suggests designing auto-grading systems to
downplay less critical checkstyle rules so as to highlight the importance of addressing
syntax and test errors first.

Third, similar debugging patterns for test errors appeared among more experienced
students, whether they came to the class with more prior experience or gained additional
experience throughout the semester. More experienced students more often performed
massive deletions that led to changes in test errors. It is unclear why this is the case, as
performing massive deletion doesn’t appear, on the surface, to be an efficient debugging
strategy. It may be evidence of increased confidence in deciding when to make signif-
icant—instead of incremental—changes to code. But further analyses will be required
to better understand this phenomenon. More experienced students also finished their
test debugging episodes attempting to fix syntax/checkstyle errors less often. While this
didn’t appear to prevent less experienced students from successfully solving problems,

138 J. D. Pinto et al.

having to fix both types of errors simultaneously might slow down the debugging pro-
cess. This suggests that it might be helpful to remind more novice students to focus
primarily on test errors instead of being distracted by syntax/checkstyle errors.

While the use of ENA in this study revealed interesting findings about debugging pat-
terns, existing limitations call for improvements in futurework. First, the context inwhich
our dataset was collected may have influenced the type of debugging behaviors that we
observed. Unfortunately, the online homework that was used by the students was lim-
ited to displaying only one test error at a time. Because of this, it may have been difficult
for students to assess whether they were making progress towards the correct solution
when debugging test errors. It also limited us in our analyses of how much progress stu-
dents were making towards the correct solution. Second, the self-reported survey data
posed some difficulties in defining student experience groups. Students exposed to more
programming languages did not consistently rate themselves at a higher ability level,
as stated in Follow-Up Question 1. More objective measures of prior experience would
help avoid such bias. Third, while ENA networks served as an insightful tool to explore
debugging patterns in different student groups, the connection between constituents can
only represent co-occurrence without showing which constituent comes before another.
Given that debugging is a sequential process, this ambiguity caused difficulties in inter-
preting some behaviors and their causes. Directed ENAnetworks [20] could be applied to
account for the sequential aspects of ENA. Fourth, additional qualitative analyses can be
combinedwith ENA to explain the co-occurrence between constituents. For example, we
found that the connection between massive deletion and a change in test error appeared
more often for more experienced students. This result was unexpected because wewould
assume incremental changes to be more efficient during debugging, in most cases. Fur-
ther analyses will be needed to qualitatively examine the submission log data and better
understand this behavior.

References

1. Murphy, L., Lewandowski, G., McCauley, R., Simon, B., Thomas, L., Zander, C.: Debugging
the good, the bad, and the quirky-a qualitative analysis of novices’ strategies. ACM SIGCSE
Bull. 40(1), 163–167 (2008)

2. Kessler, C., Anderson, R.: A model of novice debugging in LISP. In: Proceedings of the First
Workshop on Empirical Studies of Programmers, Ablex, Norwood, NJ (1986)

3. Begum,M., Nørbjerg, J., Clemmensen, T.: Strategies of novice programmers. In: Proceedings
of the 41st Information Systems Research Seminar in Scandinavia (IRIS), Odder, Denmark
(2018)

4. Perkins, D., Martin, F.: Fragile knowledge and neglected strategies in novice programmers.
In: Soloway, E., Iyengar, S. (eds.) Empirical Studies of Programmers, pp. 213–229. Ablex,
Norwood, NJ (1986)

5. Fitzgerald, S., et al.: Debugging: finding, fixing and flailing, a multi-institutional study of
novice debuggers. Comput. Sci. Educ. 18(2), 93–116 (2008)

6. Shaffer, D.W., Collier, W., Ruis, A.R.: A tutorial on epistemic network analysis: analyzing
the structure of connections in cognitive, social, and interaction data. J. Learn. Anal. 3(3),
9–45 (2016)

7. Liu, Z., Zhi, R., Hicks, A., Barnes, T.: Understanding problem solving behavior of 6–8 graders
in a debugging game. Comput. Sci. Educ. 27(1), 1–29 (2017)

Investigating the Relationship Between Programming Experience 139

8. Fitzgerald, S., Simon, B., Thomas, L.: Strategies that students use to trace code: an analysis
based in grounded theory. In: Proceedings of the 2005 International Workshop on Computing
Education Research (ICER’05), pp. 69–80. ACM, Seattle, USA (2005)

9. Fitzgerald, S., McCauley, R., Hanks, B., Murphy, L., Simon, B., Zander, C.: Debugging from
the student perspective. IEEE Trans. Educ. 53(3), 390–396 (2010)

10. Blikstein, P., Worsley, M., Piech, C., Sahami, M., Cooper. S., Koller, D.: Programming plu-
ralism: using learning analytics to detect patterns in the learning of computer programming.
J. Learn. Sci. 23(4), 561–599 (2014)

11. Berland, M., Martin, T., Benton, T., Petrick Smith, C., Davis, D.: Using learning analytics
to understand the learning pathways of novice programmers. J. Learn. Sci. 22(4), 564–599
(2013)

12. Ahmadzadeh, M., Elliman, D., Higgins, C.: An analysis of patterns of debugging among
novice computer science students. ACM SIGCSE Bull. 37(3), 84–88 (2005)

13. Jemmali, C., Kleinman, E., Bunian, S., Almeda, M.V., Rowe, E., Seif El-Nasr, M.: MAADS:
mixed-methods approach for the analysis of debugging sequences of beginner programmers.
In: Proceedings of the 51st ACM Technical Symposium on Computer Science Education,
pp. 86–92. ACM, Portland, OR, USA (2020)

14. Elmoazen, R., Saqr, M., Tedre, M., Hirsto, L.: A systematic literature review of empirical
research on epistemic network analysis in education. IEEE Access 10, 17330–17348 (2022)

15. Li, S., Huang, X., Wang, T., Pan, Z., Lajoie, S.P.: Examining the Interplay between
self-regulated learning activities and types of knowledge within a computer-simulated
environment. J. Learn. Anal. 9(3), 152–168 (2022)

16. Paquette, L., Grant, T., Zhang, Y., Biswas, G., Baker, R.: Using epistemic networks to analyze
self-regulated learning in an open-ended problem-solving environment. In: Proceedings of
the 2nd International Conference on Quantitative Ethnography, pp. 185–201 (2021)

17. Melzner, N., Greisel, M., Dresel, M., Kollar, I.: using process mining (PM) and epistemic
network analysis (ENA) for comparing processes of collaborative problem regulation. In:
Proceedings of the 1st International Conference on Quantitative Ethnography (ICQE 2019),
pp. 154–164. Springer, Cham, Madison, WI, USA (2019)

18. Swiecki, Z., Lian, Z., Ruis, A., Shaffer, D.: Does order matter? Investigating sequential and
cotemporal models of collaboration. In: Proceedings of the 13th International Conference
on Computer Supported Collaborative Learning (CSCL), pp. 112–119. ISLS, Lyon, France
(2019)

19. Karumbaiah, S., Baker, R.S.: Studying affect dynamics using epistemic networks. In: Pro-
ceedings of the 2nd International Conference on Quantitative Ethnography, pp. 362–374.
Springer, Malibu, USA (2021)

20. Fogel, A., et al.: Directed epistemic network analysis. In: Proceedings of the 2nd International
Conference on Quantitative Ethnography, pp. 122–136. Springer, Malibu, USA (2021)

21. Fan,Y., et al.:Dissecting learning tactics inMOOCusing ordered network analysis. J. Comput.
Assist. Learn. 39(1), 154–166 (2022)

22. Arastoopour Irgens, G., et al.: Modeling and measuring high school students’ computational
thinking practices in science. J. Sci. Educ. Technol. 29, 137–161 (2020)

23. Hutchins, N.M., et al.: Analyzing debugging processes during collaborative, computational
modeling in science. In: Proceedings of the 14th International Conference on Computer-
Supported Collaborative Learning, pp. 221–224 (2021)

24. Xu, W., Wu, Y., Ouyang, F.: Multimodal learning analytics of collaborative patterns during
pair programming in higher education. Int. J. Educ. Technol. High. Educ. 20(1), 1–20 (2023)

25. Paquette, L., de Carvalho, A., Baker, R.: Towards understanding expert coding of student
disengagement in online learning. In: Proceedings of the 36thAnnualMeeting of theCognitive
Science Society, pp. 1126–1131, Québec City, Canada (2014)

26. Marquart, C., Swiecki, Z., Collier, W., Eagan, B., Woodward, R., Shaffer, D.W.: rENA (0.2.4)
[R package] (2022). https://cran.r-project.org/web/packages/rENA/index.html

https://cran.r-project.org/web/packages/rENA/index.html

	Investigating the Relationship Between Programming Experience and Debugging Behaviors in an Introductory Computer Science Course
	1 Introduction
	2 Related Work
	2.1 Debugging
	2.2 ENA With Process Data

	3 Learning Context
	3.1 Data
	3.2 Eliciting Constituents

	4 Epistemic Network Analysis
	4.1 Methods
	4.2 Results

	5 Follow-Up Questions from ENA
	6 Discussion and Conclusion
	References

