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Abstract

This paper presents a human-grounded evaluation of a constraints-based approach to fully interpretable neural networks for detecting
learner behaviors. We designed and administered a test consisting of forward simulation and counterfactual simulation tasks. Participants
achieved high accuracy on both tasks, independent of their level of experience with machine learning, suggesting that the model’s
explanations are both faithful and intelligible. We discuss our evaluation design, some challenges we faced, and implications for

explainable Al in education.
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1. Introduction

In an influential keynote address, Baker [1] presented a se-
ries of six critical challenges facing researchers in learning
analytics, educational data mining, and Al in education. He
proposed one possible way to address the third challenge—
the “challenge of interpretability”—by having participants
with different levels of expertise attempt to predict the be-
havior of a complex model based on its explanations. High
agreement on this task, he argued, would indicate that the
explanations are effective at conveying the model’s reason-
ing, thus making it interpretable.

In this paper, we present our successful attempt to meet
this challenge. We derive explanations directly from the pa-
rameters of a convolutional neural network (CNN) trained
to detect gaming-the-system (GTS) behavior in an educa-
tional environment and evaluate them using two different
human-grounded tasks. An analysis of our results shows
that participants were able to accurately predict and strate-
gically alter the model’s behavior. This is an important
step towards robust evaluations of eXplainable AI (XAI) in
education.

2. Background

The pursuit of explainability has become increasingly crit-
ical, particularly in sensitive domains such as education
where decisions made by models can have significant im-
pacts on learners. While complex machine learning models
offer powerful predictive capabilities, their inherent opacity
often raises concerns regarding fairness, accountability, and
the potential for pedagogical insights to be obscured. This
has spurred research into developing educational models
that are understandable by various human stakeholders [2].

2.1. Evaluating explainability

The development of explainable models necessitates robust
methods for evaluating their explainability. While model
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accuracy has well-established metrics, assessing explainabil-
ity is a less mature task that often depends on the context
and needs of the target end-users [3].

Towards this end, Doshi-Velez & Kim [4] proposed a
framework categorizing evaluation methodologies for ex-
plainability into three categories. Application-grounded eval-
uations test explanations in real-world tasks with end-users,
offering high fidelity but often being costly. Functionally
grounded evaluations use proxy tasks without human in-
volvement, measuring aspects like model sparsity or expla-
nation simplicity as proxies for intelligibility. This paper
focuses on human-grounded evaluation, which involves real
humans performing simplified tasks to assess how well they
understand and can use the model’s explanations.

Central to evaluating explanations are the criteria of faith-
fulness and intelligibility. Faithfulness refers to how accu-
rately an explanation reflects the model’s internal reasoning,
while intelligibility refers to the ease with which a human
can understand the explanation [5]. Depending on the use
case, a high level of both can typically be considered a pre-
requisite for an explanation to be truly useful.

2.2. A constraints-based approach to
interpretable models

With the goal of achieving faithful and intelligible expla-
nations, we developed a novel constraints-based approach
to creating fully interpretable neural networks [6]. Our
methodology departs from traditional post-hoc explanation
methods by integrating interpretability directly into the
model design process.

The model was specifically trained to detect GTS behav-
ior, a form of student disengagement where learners exploit
system properties to achieve success without genuine un-
derstanding. This choice was strategic, leveraging existing
expert-defined features and models for GTS detection [7].

Our approach aligns with the theoretical framework for
AT explanations proposed by [8], which defines explana-
tions as the output of an explicit interpretation function
performed on evidences derived from a model’s parameters.
Our model is designed such that its convolutional filters
serve as direct evidence, with an inherent interpretation as
sequential behavioral patterns. This design ensures high
explanatory potential, meaning that the extracted evidence
(the filters) fully accounts for the model’s predictions at
inference-time [6].

While we previously conducted a functionally grounded
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evaluation of our model’s interpretability [6], this paper
presents a human-grounded evaluation, which is crucial for
more accurately assessing the faithfulness and intelligibil-
ity of the explanations generated by our constraints-based
approach.

3. Methods

3.1. Questionnaire design

We designed a series of problems to evaluate how well partic-
ipants were able to understand our model’s inner workings
using our explanations. We implemented these problems in
the form of a questionnaire that participants could complete
online.

The structure of the questionnaire is as follows: (1) con-
sent form, (2) demographic questions, (3) description of the
model, its explanations, and the tasks, (4) one practice prob-
lem with debriefing, (5) forward simulation task, comprising
of five problems, (6) counterfactual simulation task, com-
prising of another five problems, and (7) an optional form
to receive compensation for completion. We estimated that
the entire questionnaire would take approximately 20-60
minutes to complete.

The questionnaire was designed to be accessible to a wide
audience, including those with no prior experience in ma-
chine learning or AI. When presenting a brief textual intro-
duction to GTS behavior and our model, we also introduced
participants to the visualization format used in our expla-
nations, which consists of a grid representing each of our
model’s convolutional filters. Because our model only has
a single convolutional layer, and due to the nature of our
data, each column in the grid corresponds to an action step
(a point in time at which data was collected), and each row
corresponds to a feature of the model. Our model purposely
uses a small set of expert-defined features and convolutional
weights are constrained to be binary, culminating in a grid
that is easy to interpret.

Figure 1: Figure from the questionnaire explaining the nature of
the model’s convolutional filters (green) and inputs (blue).

We also represented the model’s inputs in the same for-
mat, overlaying the filter grid on top of the input grid to
help participants understand how the model’s predictions
are made. If all positive features in any of the filters (green
squares) are also positive on the input (blue squares), then
the model will give a positive prediction. If none of the
filters matches the input, then the model’s prediction will
be negative. Figure 1 shows an example included in our
questionnaire, demonstrating the sliding nature of the con-

volutional filters. The entire text of our questionnaire’s
introduction to the explanation format is included in Ap-
pendix A.

We asked participants to complete two tasks: a forward
simulation task and a counterfactual simulation task. The
forward simulation asks participants to predict the model’s
output given a specific input—this was the example pro-
posed by [1]. For each of the five forward simulation prob-
lems, we provided participants with visualizations of the
model’s filters and a single input visualization. Each filter
had a number assigned. Participants were asked to select
whether the model would predict “Not GTS” (no match)
or “GTS” and the specific number of the matching filter
from a drop-down menu. To make the visual inspection less
cumbersome, we also provided an interactive explanation
with a slider that allowed participants to cycle through each
filter, one at a time, and to move the overlaid input grid left
and right, simulating the sliding nature of the convolutional
filters (see Figure 2).

Figure 2: Interactive explanation as presented to participants.

Following the forward simulation problems, participants
were presented with the counterfactual simulation task, con-
sisting of five problems in which participants were asked
to identify a specific change to the input that would alter
the model’s output. The way the explanation was presented
remained the same, but participants were given the model’s
prediction (either “GTS” or “Not GTS”) and the drop-down
menu consisted of five possible changes to the input, such
as “remove v15 at action 57, “add v21 at action 4”, “remove
v7 at action 2”, “remove v23 at action 4”, and “add v12 at
action 1”.

For each of the two tasks, we progressively increased
the number of filters presented in each problem, starting
with 8 filters in the first problem, increasing to 16 filters
in the second and third problems, and finally increasing
to 32 filters in the last two problem. While the task itself
remained the same, this design allowed us to assess the
impact of increasing apparent complexity on participants’
performance. We say “apparent” complexity because we
expect this change to primarily impact the psychological
perception of being presented with more possibilities, as
well as the time required to go through the entire set. In
actuality, the task remains the same. In other words, both
tasks are sequential (go through each filter one at a time), so
while the length of the sequence may increase, the cognitive
load remains constant with no additional parallel processing
required.

In addition to participants’ answer to each problem, we
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also asked them to rate their level of confidence in their
answer. We used a 4-point Likert scale for this, with the op-

tions: “not at all confident”, “not very confident”, “somewhat
confident”, and “very confident”.

3.2. Data collection and analysis

We administered the questionnaire online via Qualtrics,
a web-based survey platform. We recruited participants
through three venues: the International Educational Data
Mining Society mailing list, the International Artificial Intel-
ligence in Education Society mailing list, and the Learning
Engineering Google Group. We also provided a small mone-
tary compensation for participation.

We collected a total of 222 complete responses. Unfortu-
nately, we did not anticipate the amount of obviously fake
responses, with participants completing the questionnaire
multiple times very quickly (in one particular case, many
dozens of times). The irony of this outcome for a study on
GTS behavior was not lost on us.

To address this, we analyzed the distribution of time taken
to respond to each problem. We identified a gap in the me-
dian distribution at around one minute and set this as a
conservative minimum threshold for valid responses. Real-
istically, we estimated that participants who were genuinely
trying to solve the problems accurately would generally
take longer than this, but we wanted to err on the side of
caution. We then removed all responses that did not meet
this threshold, resulting in a final sample size of 36 “serious”
participants.

Out of these, 13 participants were graduate students or
postdocs, 6 were non-university researchers, and 5 were
tenure-track faculty, with the remaining 12 falling in other
smaller categories. 20 participants were female, 14 were
male, 1 was non-binary, and 1 preferred not to say. The
majority of participants were from North America (19), fol-
lowed by Europe (9), with other continents barely repre-
sented. Most relevant to our study, 15 had substantial ex-
perience with machine learning, 17 had an introductory
understanding, and 4 had little to no knowledge.

For our analyses, we first calculated the mean accuracy
and 95% confidence intervals (CIs) across all problems. We
also calculated mean accuracy and participant confidence
for each problem separately. To assess the impact of task
type (forward vs. counterfactual simulation), we used the
Wilcoxon signed-rank test due to the non-normal distribu-
tion of scores. For the analysis of difficulty levels based on
the number of filters, we used the Friedman test, and for
experience level comparisons, we used the Kruskal-Wallis
H-test. Finally, we calculated Spearman’s rank correlation
coefficient and Kendall’s tau-b coefficient to assess the rela-
tionship between accuracy and confidence.

4. Results

Across all 10 problems, our subset of 36 “serious” partici-
pants achieved a mean accuracy of 0.775 (standard deviation
=0.310, 95% CI = [0.656, 0.861]) and a median accuracy of
0.900 (95% CI = [0.800, 1.00]). 16 participants achieved a
perfect score, as shown in the score distribution in Figure 3.
Results for each individual problem are shown in Table 1.
When analyzing the two tasks separately, we found that
participants performed slightly better on the forward simu-
lation problems (mean accuracy = 0.806, standard deviation

0.0 0.2 0.4 0.6 0.8 1.0
Accuracy on entire questionnaire

Figure 3: Histogram of participant accuracy across all problems.

=0.319, 95% CI = [0.678, 0.889]) compared to the counterfac-
tual simulation problems (mean accuracy = 0.744, standard
deviation = 0.360, 95% CI = [0.611, 0.850]). However, we
found these differences to not be statistically significant.
For this we used a Wilcoxon signed-rank test due to the
non-normal distribution of the differences between means
(Shapiro-Wilk test, W = 0.759, p < 0.001), which yielded
a statistic of 36.500 and a non-significant p-value of 0.180.

Table 1

Per-problem accuracy and confidence statistics. Median accu-
racy for all problems was 1.00. FS = forward simulation, CS =
counterfactual simulation.

Accuracy Confidence
Problem  Mean Std. dev. Mean  Std. dev.
FS.1 0.778 0.422 3.556 0.809
FS.2 0.889 0.319 3.167 0.941
FS.3 0.778 0.422 3.694 0.668
FS.4 0.722 0.454 3.611 0.766
FS.5 0.861 0.351 3.222 0.898
CS.1 0.639 0.487 3.611 0.688
CS.2 0.861 0.351 3.389 0.964
CS.3 0.694 0.467 3.250 1.052
CS.4 0.750 0.439 3.361 0.990
CS.5 0.778 0.422 3.528 0.941

We also analyzed the impact of the number of filters
presented in each problem. We grouped the problems into
three difficulty levels based on the number of filters: easy
(8 filters), medium (16 filters), and hard (32 filters). For the
forward simulation task, we found no significant difference
in accuracy across difficulty levels (Friedman test, x* =
1.167, p = 0.558). For the counterfactual simulation task,
we also found no significant difference in accuracy across
difficulty levels (Friedman test, x> = 3.950, p = 0.139).
This suggests that the number of filters did not significantly
impact participants’ performance on either task.

Since participants’ level of experience with machine learn-
ing varied, we evaluated the impact of their background on
their task performance. Due to the non-normality and non-
homogenous variances of the scores in each category, we
used the Kruskal-Wallis H-test to compare the mean ac-
curacy across the four groups of experience levels. The
results showed no significant difference between groups
(H-statistic = 0.819, p = 0.845). The mean accuracy and
standard deviation for each group are shown in Table 2.

We explored the relationship between participants’ accu-
racy and their confidence in their answers. We calculated
Spearman’s rank correlation coefficient and Kendall’s tau-b
coefficient to assess the monotonic relationship between
correctness and confidence. The results showed a moder-
ate positive correlation, with Spearman’s rho = 0.449 (p <
0.001) and Kendall’s tau-b = 0.430 (p < 0.001). This indicates
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Table 2

Accuracy by experience level.
Experience level Mean  Std. dev. N
Little to no knowledge 0.550 0.520 4
Intro-level college course 0.876 0.139 17
Substantial real-life experience ~ 0.745 0.336 11
Regularly develops models 0.650 0.473 4

that as participants’ accuracy increased, their confidence in
their answers also tended to increase. Aggregate statistics
(problem-level) for these two measures are shown in Figure

: i:[ I:I II

B Mean Correctness
Mean Confidence

Mean accuracy

~ % ) v ) > %
B R L SINC UG SO SO Uk
Problem

Figure 4: Mean accuracy and confidence by problem (with 95%
Cl). Confidence is measured on a 4-point Likert scale.

One thing to note is that the number of multiple-choice
options in each problem varied widely, ranging from 5 (all
counterfactual simulation problems) to 33 options (the two
forward simulation problems with 32 filters). We reasoned
that this could potentially skew the results, as participants
might find it easier to guess correctly when there are fewer
options. To address this, we adjusted the “correctness” of
each answer by assigning a score of 1 for correct answers
and a negative score of — 5 for incorrect answers, where
k is the number of options in the problem. This adjustment
ensures that the penalty for incorrect answers is propor-
tional to the number of options available, making it fairer
across problems with different numbers of choices.

We applied adjustment and re-ran all of the analyses
presented above for comparison. While this led to small
changes in the various statistics, all significance test re-
sults remained unchanged. The accuracy difference be-
tween tasks remained non-significant (Wilcoxon signed-
rank statistic = 63.000, p = 0.117), the difference based
on number of filters remained non-significant for both
tasks (Friedman test for forward simulation: 2 = 1.444,
p = 0.486; for counterfactual simulation: X2 = 3.950,
p = 0.139), and the experience level comparison also re-
mained non-significant (Kruskal-Wallis H-statistic = 0.834,
p = 0.841). Finally, the correlation between accuracy and
confidence remained significant (Spearman’s rho = 0.450,
p < 0.001; Kendall’s tau-b = 0.419, p < 0.001).

5. Discussion

Our finding that participants were able to accurately predict
the model’s behavior in both the forward simulation and
counterfactual simulation tasks suggests that our model’s
explanations are both faithful and intelligible, as participants
could effectively understand and utilize the information
provided.

The correlation between accuracy and confidence further
supports the notion that participants were not only able to
predict the model’s behavior but also felt confident in their
understanding of the explanations. This further suggests
that participants could grasp the underlying reasoning be-
hind the model’s predictions, as well as their own sense of
understanding.

Though a bit counterintuitive, the lack of impact of the
number of filters on participants’ performance validates
our intuition that our explanations allow for the tasks to
be performed sequentially, with no additional cognitive
load introduced by the increased number of filters. This
is particularly important considering the large number of
filters in our final model (132), and the essentially limitless
number of potential patterns indicative of GTS behavior.

Though we are also encouraged by the lack of significant
difference in performance based on participants’ experience
level, it is worth noting that this may in part be due to
our small sample size (after removing responses that were
clearly completed too quickly to have been attempted seri-
ously). This sample size limitation would be good to address
in future work.

Another point to note is that we did not present partic-
ipants with the meaning of our model’s features. While
participants were generally able to complete the tasks suc-
cessfully using our explanations, those explanations left the
specific features vague. We did this intentionally. Although
each feature was carefully engineered and imbued with
meaning through the process of cognitive task analysis with
a GTS expert [7], we reasoned (accurately, as evidenced by
our findings) that for our particular simulation tasks, such
understanding was not necessary. Even understanding GTS
behavior or that this model was designed to be used in educa-
tional settings was ultimately irrelevant to the task. This is
one difference between some human-grounded evaluations—
such as the one we present here—and application-grounded
evaluations, in which details pertaining to the domain and
context become important.

This partly blind design makes it impossible to evaluate
our explanations’ plausibility, which refers to the degree to
which an explanation aligns with human intuition [9]. This
somewhat limits how much our evaluation encompasses
the full scope of intelligibility [5]. Our participants clearly
understood how to use the explanations, but they did not
have sufficient information to be able to apply it to a real-
world scenario.

This leads us to consider the implications of our findings.
The results of our human-grounded evaluation suggest that
our constraints-based approach to interpretable neural net-
works can indeed produce explanations that are demonstra-
bly faithful, but also intelligible to a large degree. This is
a significant step towards creating models that can be ef-
fectively used in educational settings, where understanding
learner behavior is crucial.

6. Conclusion

In this paper, we presented a human-grounded evaluation
of a constraints-based approach to fully interpretable neural
networks for detecting learner behaviors. We performed
this evaluation by designing and administering a question-
naire that included forward simulation and counterfactual
simulation tasks. Our results on both tasks indicate that
participants were able to accurately predict the model’s
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behavior, achieving an accuracy with mean = 0.775 and
median = 0.900 across all problems. This suggests that the
model’s explanations are both faithful and intelligible, as
participants could effectively understand and utilize the
information provided.
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A. Questionnaire: Task information

You will be presented with two tasks that involve visually
matching patterns and selecting the correct response to a
series of questions. These patterns have been extracted
from a machine learning model designed to detect the stu-
dent behavior known as gaming the system (GTS) in data of
students’ interactions with an intelligent tutoring system.

You do NOT need to understand the intricate details of
the model or have any previous knowledge of GTS behav-
ior in order to correctly answer the questions throughout
this questionnaire. Your tasks will simply involve matching
patterns to decide when the variables fed into the model
will result in the model detecting GTS (positive) or not GTS
(negative). If you find this interesting and wish to better
understand how the model works (preferably after you com-
plete this questionnaire), you can find some preliminary
findings for this project in Pinto et al. (2023) or read the
overarching big-picture proposal here.

For the sake of simplicity, each of the 23 variables that
are fed into the model (inputs) have been labeled v01 to
v23. Each is a binary variable, meaning it can have one of
two values, 0 or 1. A value of 1 indicates that the variable
was present for that action. As an example, one student’s
sequence of 5 actions on a particular problem may look like
this:

v01 v02 v03 v04 vO05 v06 v07 v08 v09 v10 vil vi2 vi3 vi4 v15 vi6 vi7 vi8 v19 v20 v21 v22 v23
action1 o © 0o 0o 0 0o 0o 0 0 0 0 0 0 O 0 0 0o 0 o
action 2
action 3
action 4
action 5

coooo

0
1
1
0

coooo
coooo
coooo

0
1
1
1

coom
hReo R

The patterns from the model will be presented to you in
a transposed (vertical) format, so let’s transpose this data
now. Notice that the actions (indicative of time passing)
now progress from left to right. To make it easier to read
this at a glance, we’ll also convert all values to colors: white
for 0 and blue for 1.

This visualization makes it easy to see that this student
took the following actions: first, they performed v23; sec-
ond, they performed v01, v04, v15, and v21; third, they
followed this with v07, v15, v17, and v23; their fourth ac-
tion consisted of v07, v13, v15, v17, v20, and v23; finally,
their fifth action in this sequence included v06, v15, v17,
and v23.

Now you will see some of the patterns automatically
learned by the model. Notice that these patterns are all
three actions long.

You can think of these learned patterns as a set of win-
dows that “slide” across students’ actions, one at a time. If
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a sequence of student actions matches any of the model’s
learned patterns, then the model will label that input se-
quence as GTS. Otherwise, it will label it as not GTS.

As you can see below, the third pattern above matches
the student data we’ve been looking at. Note that student ac-
tions can include additional positive (blue) variables that are
not positive in the model’s pattern. As long as the positive
variables in the pattern are also positive in at least one set of
three consecutive student actions, then the entire sequence
is labeled GTS.

Time for you to test your understanding. Using the
learned patterns below, would the model label the input
sequence of actions (blue) as GTS or not GTS?

#01

3
8
B

wi wi
w2 w2
w3 w3

ws w5

535
3

s w8
e o
vio vio

M

o # w2

vz s

[
NN
[T

D

s is
e e
Wt
s vis
o e
2 0

EEL

A,
e

22 2
2 23
12345 123 123 123

To make this process a bit more intuitive, we’ve included
a second way to view each question, with a slider and the
ability to cycle through each pattern. This interactive over-
lay view has all the same patterns as the static view above.
Try it out below and feel free to use the view that you prefer
in the real questions.

If you selected GTS: Pattern #02, you’re right! (If you got
it wrong, feel free to use the back button below to try to
understand why.) This pattern is the only one that matches.
Of course, the real model uses more than just three patterns,

[ Select one i l

Select one I

NotGTS
GTS: Pattern #01
GTS: Pattern #02

GTS: Pattern #03

and they’re all patterns that it learned on its own given lots
of training data.

Now that you’re familiar with the visualizations of the
model patterns and student actions, you’ll get the chance
to answer some similar questions. Remember that this is
all to help us evaluate how well the inner workings of this
machine learning model can be interpreted by flesh-and-
blood humans—Ilike you!
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