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Abstract. Identifying and annotating student use of debugging strate-
gies when solving computer programming problems can be a meaningful
tool for studying and better understanding the development of debug-
ging skills, which may lead to the design of effective pedagogical interven-
tions. However, this process can be challenging when dealing with large
datasets, especially when the strategies of interest are rare but important.
This difficulty lies not only in the scale of the dataset but also in oper-
ationalizing these rare phenomena within the data. Operationalization
requires annotators to first define how these rare phenomena manifest in
the data and then obtain a sufficient number of positive examples to val-
idate that this definition is reliable by accurately measuring Inter-Rater
Reliability (IRR). This paper presents a method that leverages Large
Language Models (LLMs) to efficiently exclude computer programming
episodes that are unlikely to exhibit a specific debugging strategy. By
using LLMs to filter out irrelevant programming episodes, this method
focuses human annotation efforts on the most pertinent parts of the
dataset, enabling experts to operationalize the coding scheme and reach
IRR more efficiently.

Keywords: Inter-Rater Reliability · Large Language Models · Program-
ming Education.

1 Introduction

Understanding why students succeed or fail in programming is fundamental to
supporting their learning process in computer science education research. Online
platforms have enabled the capture and analysis of student behavior and perfor-
mance data on a large scale, helping to reveal factors that contribute to students’
success [17]. Among various programming skills, debugging is a distinct and diffi-
cult task for novice programmers. They often do not yet possess a comprehensive
knowledge of programming [6] and the strategic skills to control the program-
ming process effectively [30]. Thus, understanding the strategies novices employ
and the misconceptions they confront is useful for debugging instruction [28].

The study of debugging with log data often requires human interpretation
or annotation of students’ behaviors, such as in [14, 26]. However, the process of
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defining codebook for phenomena of interest (debugging strategy in this study)
can prove challenging in large datasets when the phenomena of interest are rare.
An important difficulty lies in the need to be able to identify enough examples
of the phenomena for annotators to engage in meaningful discussion about how
a phenomenon should be operationalized in the data. Because of the scale of the
dataset and the rarity of the phenomena annotators may spend a considerable
amount of effort looking at irrelevant examples. Once an operational definition
has been reached, the rarity of the phenomena increases the burden for validating
the definitions through measures of Inter-Rater Reliability (IRR) as annotators
will be required to annotate a large amount of examples to obtain a sufficient
number of positive examples.

Recent developments in machine-assisted annotation tools have been lever-
aged to reduce the burden of human annotation when annotating textual data.
Tools like nCoder [8] have been developed to help researchers define and auto-
matically annotate phenomena of interest in textual data by searching for userde-
fined regular expressions aligning with the annotation’s definition. nCoder uses
such regular regulation to both inflate the number of positive examples of the
phenomena when validating reliability of human annotations and to automati-
cally annotate large scale datasets (once IRR has been achieved). While there
has been effort to extend the use of nCoder beyond textual data [24], there is a
need for similar approaches to annotating other types of data such as computer
programming code, video recording or other mixed media.

The emergence of Large Language Models (LLMs) presents a promising av-
enue as a tool to assist with the annotation of student debugging strategies when
solving computer programming problems [36, 35, 1, 4]. LLMs’ ability to process
and generate both natural language and computer programming code enables
them to discern complex patterns and relationships within student programming
problems. Such capabilities can be especially helpful when studying rare debug-
ging strategies where LLMs can be used to process large datasets to identify and
focus the attention of human annotators on examples of debugging behaviors
that are most relevant to a rare strategy.

In this study, we introduce an methodology that leverages GPT-4 [1], a well
known LLM, to assist human annotators in operationalizing definitions of rare
debugging strategies, and validating these operationalizations through measure-
ment of IRR. The proposed method leverages GPT-4 ability to process large
amount of computer programming data to identify the problem-solving episodes
that are most relevant to a given debugging strategy and to focus the attention of
human annotators on these relevant examples. We demonstrate the effectiveness
of our methodology through empirical evaluations and discuss the implications
for using LLMs in supporting more targeted discussion of edge cases and fa-
cilitating validation of the annotations through measurement of IRR using test
samples in which the frequency of occurrence of rare strategies has been inflated.
In particular, we seek to answer the following research questions:

1. How well can LLM help focus the attention of human annotators on rele-
vant examples of rare debugging strategies?
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2. How can LLMs be used to iteratively refine the operational definition of
rare debugging strategies?

3. How can LLMs assist human annotators in validating the operational
definition of rare debugging strategies through measurement of IRR?

2 Related Work

2.1 Debugging Annotations

In computer science education, identification of debugging-related concepts in
computer code has been an important step toward the interpretation of stu-
dents’ behaviors and effective intervention. Many researchers focused on the
strategies employed in debugging, a systematic search for the source of a bug
and its removal [20]. These strategies were mostly elicited based on the labeling of
students’ discourse, such as their think-aloud transcriptions [22], semi-structured
interviews [13], or submissions [28]. Some studies focused more specifically on
labeling debugging behaviors as components in a problem-solving process [25, 9,
26, 29, 18]. The commonly used annotation approaches are grounded theory [14]
and a priori coding [21, 27].

One of the challenges in debugging annotation is that manual labeling is
time-consuming. As such, studies that label data with debugging strategies tend
to be on a smaller scale, such as in [26]. With the rapid popularization of online
learning platforms for programming, the large amount of submission log data has
been a rich resource for understanding students’ learning process, and there is a
need for automated annotations to be applied to larger-scale datasets. Existing
work has investigated the use of logs of students’ problem-solving traces to study
debugging behaviors. However, these studies tend to apply more data-driven
methods and look at specific components of debugging, rather than looking at
strategies as a whole. For example, [19] calculated four fine-grained levels of code
modifications (no, small, medium, and large change) to describe students’ debug-
ging techniques. Although code modification is indeed an important component
of debugging, debugging strategies are usually a higher-level holistic behavior
composed of many factors.

2.2 Rare Phenomena of Interest

Beyond the difficulty of annotating debugging strategies automatically, another
challenge can emerge when phenomena of interest to be annotated that are rare.
Once the codebook is created, researchers need to validate the coding schemes
and also achieve inter-rater reliability (IRR) with a representative sample (usu-
ally random selection) of the whole dataset. However, for rare phenomena, their
insufficient representation makes it difficult to refine and validate the definition
in the codebook. Automated coding tools have been developed to help reduce
the cost of this manual process, such as nCoder (https://app.n-coder.org/) for
text data annotation. However, rare phenomena still pose challenges. As ana-
lyzed by [8], even when the automated coder achieves acceptable reliability with
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the human annotators for rare phenomena, there can be a potentially high rate
of false negatives and a low recall, which implies that the automated system
fails to identify a substantial number of true occurrences of the phenomena or
incorrectly picks out too many negative samples as phenomena, questioning the
generalizability of the codebook to the whole dataset.

2.3 Annotations with LLMs

Recently, AI researchers have been exploring the potential of LLMs to emulate
human annotators in various tasks. For example, [10] evaluated the performance
of GPT-3 to annotate unlabeled data and to generate labeled data. [7] used GPT-
3.5-turbo to annotate data for different sentiment analysis tasks and compared
the accuracy with lexicon-based algorithms. [3] used GPT-3 to code teachers’
textual transcripts in classrooms and found GPT outperformed Multinomial
Naive Bayes and k-nearest neighbors. [15] found GPT-3.5-turbo outperformed
crowd workers on four annotation tasks: relevance, stance, topics, and frame de-
tection. ChatGPT also exceeded crowd workers and trained annotators on the
inter-coder agreement in the same study [15]. These studies showed promising
results for using GPT to produce comparable annotation results to humans at
a lower cost. Besides accuracy and cost, GPT has also been used to provide
explanations for implicit speech detection[16] as a way to enhance human un-
derstanding. [38] also found that GPT’s explanations of its coding decisions can
help improve the consistency and construct validity of human-generated codes.

Although LLMs exhibited strengths in automated annotations for general
annotation tasks, such automated procedure often still require a pre-existing
well-defined and reliable codebook. This is the case in the contexts such as
computer science education where there is no unified codebook for debugging
annotations. As such, there is a need to investigate ways in which LLMs can be
used as tool to facilitate the creation and validation of reliable codebooks.

3 Methods

We first compiled a list of debugging strategies from prior computer science edu-
cation research, then annotated episodes of student problem-solving behavior to
define a codebook of each strategy in our dataset. The initial round of annotation
revealed challenges in achieving IRR for rare debugging strategies. We then em-
ployed an LLM-based filtering mechanism to identify submission episodes likely
to contain these rare strategies. This pre-selection was informed by developing
and refining LLM prompts based on earlier expert-annotated examples. These
prompts were then applied at a broader scale to identify examples of student
behaviors that were closely aligned with the strategies of interest. The LLM’s
output was then used to 1) focus the annotators’ attention on examples of de-
bugging behaviors that could be discussed to refine the coding schemes, and 2)
generate samples used to validate the codebook through measurement of IRR.
The LLM used in this study is GPT-4.
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3.1 Participants and Data Collection

The data was collected from 745 students enrolled in an undergraduate intro-
ductory computer science course (CS1) at a Midwestern public university. This
course, primarily focusing on Java programming, drew a diverse cohort of stu-
dents, predominantly first-year undergraduates, with an age range of 18 to 22
years (31% female). These participants represented a range of academic disci-
plines, though primarily from computer science and engineering fields, reflect-
ing varied levels of prior programming experience (as measured through a self-
reported pre-course survey).

Throughout the Fall 2019 semester, students were asked to solve 69 Java pro-
gramming homework problems designed to progressively enhance their computer
programming knowledge. Homework problems were typically assigned every day
of the week, and students were given 24 hours to complete each question and
as many submissions as they can. On average, students submitted 7.49 solution
attempts per question. Upon submitting their code, students received immediate
feedback from the auto-grading system. The system first checked each submis-
sion for syntax and code-style errors and reported every identified error. If no
such issues were found, the student’s code was then evaluated against a series
of problem-specific test cases. If there was any test error, information about the
first test error encountered was provided to the student. The auto-grading sys-
tem logged each submission, including timestamps, submitted code, and the list
of errors shared with the students. This rich dataset provides information about
the students’ learning process and about how students attempted to debug their
programs throughout their multiple submissions. This data collection approach
enables in-depth analysis of how students develop and apply debugging strategies
as they progress through the course.

3.2 Annotation Process and Initial Challenges

The annotation team consisted of two graduate students proficient in Java pro-
gramming and experienced in data annotation. They were also familiar with
common student misconceptions and debugging strategies. Before annotating,
the team reviewed literature to identify a broad range of debugging strategies
used by novice and expert programmers, establishing a consistent understanding
of observable behaviors indicative of these strategies within the study data.

To develop a comprehensive codebook for annotating debugging strategies,
the team reviewed relevant literature, yielding a diverse set of strategies em-
ployed by programmers when debugging their code. Key strategies identified
include working around the problem [28], gathering information [37], consider-
ing alternatives [28], iterative refinement [32], using intermediate results [32],
tracing [28, 27], print statements [2, 12, 31, 27, 23], backtracking [12, 23], tinker-
ing [28, 26], isolating the problem [28, 27], divide-and-conquer [27], fixing the
first error and ignoring the rest [5], and starting over [14, 22]. An initial list of
22 strategies was collected and served as the foundation for the codebook. This
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Table 1. Table of Debugging Strategies, Kappa Scores, and Occurrence Rates

Strategy KappaOccur Description

Focusing on
problem

0.76 52% Concentrated efforts to rectify a singular syn-
tax/checkstyle error across different code instances.

Iterative
changes

0.82 29% Step-by-step code corrections based on smaller, targeted
modifications leveraging existing, functioning code seg-
ments.

No difference 0.50 1% Changes that do not affect the output; include trivial
modifications such as variable name changes and function
equivalents.

Explaining
the code

0.00 0% Annotations or comments that elucidate code function-
ality; meaningful renaming of variables and addition of
descriptive comments.

Fix multiple
syntax errors

0.00 3% Fixing multiple syntax/checkstyle errors at the same
time.

Locating the
problem

-0.01 0% Employing strategies like Divide-and-conquer and Binary
search to pinpoint the exact error location such as by
commenting out a section of code.

Starting over 0.48 5% Removing a substantial portion of the code to begin
anew, often without a logical, iterative approach.

Syntax error
tinkering

0.00 2% Systematic yet unproductive code modifications aimed at
syntax error resolution without a clear direction.

Test error
tinkering

0.67 2% Similar to Tinkering: Syntax, but with a focus on resolv-
ing test errors through aimless code alterations.

Tracing 0.39 4% Utilizing print statements to observe code execution out-
comes, with the aim of adjusting code based on the out-
put insights.

No strategy 0.67 19% (No specific description provided)

list was further refined to combine similar strategies and remove strategies that
could not be observed in the study’s data.

First, the annotation experts discussed the initial 22 strategies to identify
cases where different terms were used for similar strategies, such as printing
and logging and print statement, consolidating related strategies to create a
more concise list. Second, they determined the relevance and observability of
each strategy within the learning platform, refining the list to focus on those
directly observable through students’ code submissions and excluding the ones
not observable. Overall, 10 strategies were retained. Table 1 presents the final
list of debugging strategies and a short description for each one.

We developed a tool to facilitate the annotation of debugging strategies in
the students’ problem-solving data. The tool displays each student’s submis-
sions and errors for every homework question, allowing experts to browse sub-
missions sequentially and compare pairs of submissions to identify debugging
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Fig. 1. A screenshot of the browser tool used for annotation.

strategies. Checkboxes are provided for marking strategies, and navigation but-
tons enable efficient switching between questions and submissions. Randomly
selected episodes of student problem-solving, consisting of three to five consec-
utive submissions, were chosen for annotation. If students required more than
five submissions to solve a problem, a subset of five consecutive submissions was
randomly selected from all submissions on that problem.

Annotators labeled strategies at the episode level, following the codebook to
ensure consistency. They focused on changes between submissions rather than
submissions themselves. Strategies like tracing and starting over were labeled
if they occurred at least once in an episode, while others (focusing on problem,
iterative changes, tinkering: syntax, tinkering: test, and fix multiple syntax er-
rors), required at least two occurrences to be labeled. The no strategy label was
mutually exclusive. The annotators first iteratively coded sets of 20 episodes at
a time, comparing annotations, refining the codebook to ensure clear, compre-
hensive definitions for each strategy. This process continued until they achieved
a satisfactory level of agreement, and 220 episodes were coded during this phase.

In the validation phase, the two annotators independently coded 253 episodes.
IRR was measured using Cohen’s Kappa, which accounts for chance agreement.
Kappa values of 0.6-0.80 indicate substantial agreement, while values above 0.8
suggest almost perfect agreement. Only focusing on problem (Kappa = 0.76) and
iterative changes (Kappa = 0.82) showed satisfactory Kappa values and were the
most common strategies, occurring in 52% and 29% of episodes, respectively.
The remaining strategies occurred less frequently (2-5% in all episodes) and did
not achieve the same level of agreement, suggesting further refinement may be
needed. Three strategies, locating the problem, no difference, and explaining the
code, were almost never observed (occurrence of 1% or less) and were excluded
from further analyses.
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3.3 LLM-based Filtering Technique

We hypothesized that the low occurrence of relevant problem-solving episodes in
the annotated data was a barrier to reaching reliable agreement on rare strate-
gies. Exposing annotators to both positive and negative examples of a strategy
during codebook refinement is crucial for discussing the boundaries of what con-
stitutes a positive example. This motivated us to find automated ways to filter a
larger amount of debugging episodes to identify those more likely to be relevant
to rare strategies. To address this challenge, we employed an LLM-based mech-
anism to filter submissions, retaining only those likely to contain rare strategies.
The goal was not to replace human annotation but to enable annotators to focus
on episodes more likely to be relevant to the strategies of interest. This approach
involves two steps:

1. Prompt Engineering: We develop prompts that guide the LLM to identify
submissions more likely to contain rare debugging strategies, aligning with the
characteristics and patterns defined by the annotators in their initial annotation.

2. Inflated sampling: The LLM filter processes the dataset and identifies
episodes matching the criteria specified in the prompts, increasing the prevalence
of rare strategies within the datasets for annotation.

3.4 Prompt Refinement

We first designed an initial LLM prompt using simple text-based descriptions
of the strategy definitions used by human annotators, without explicit structure
to guide the LLM’s decision-making process. This setup yielded unsatisfactory
results, with the LLM struggling to distinguish between rare and common debug-
ging strategies, often overlooking episodes containing rare strategies and leading
to misclassifications. For example, the LLM confused fix multiple syntax errors
with focusing on problem and iterative changes with starting over.

To evaluate the LLM’s performance, we compared its annotations to a ground
truth dataset of 253 expert-agreed annotations. Kappa scores between the LLM’s
labels and the ground truth labels revealed low agreement even for common
strategies (Table 2). Minor adjustments to the wording and addition of detailed
guidelines yielded minimal improvements, aligning with recent NLP research
suggesting that prompt variations provide insignificant performance gains [33].

To improve the prompt, we sought to elicit the experts’ domain knowledge.
Discussions revealed that experts employ a hierarchical structure in their annota-
tion process, ruling out certain strategies before examining others. We developed
a decision map (Figure 2) capturing this hierarchical nature and restructured
the prompts to emphasize the sequential filtering approach used by experts.

Additionally, we obfuscated strategy names to mitigate LLM bias based on
the names, replacing them with generic labels (Strategy A to G, and N for no
strategy ; Table 2). This aimed to prevent the LLM from relying on semantic
connotations, forcing it to focus on the underlying patterns and characteristics
described in the prompt. The full prompts are available on GitHub1.
1 https://github.com/heds-lab/heds-lab-LLM-Filtering-Debugging-Strategies
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Fig. 2. Decision map of the expert decision-making process during annotation.

3.5 Further Rounds of Annotations

The refined LLM filtering prompts (P2) were applied to a new set of 500 ran-
domly selected problem-solving episodes to identify examples for refining the
coding schemes of rare debugging strategies and assessing IRR. The filter iden-
tified 51 episodes for tracing and 70 for starting over. To inflate the frequency
of these strategies, we randomly selected half of the identified episodes for each
strategy (26 for tracing and 35 for starting over), mixed them with an equal num-
ber of randomly selected episodes from the remaining 388 episodes not flagged
as relevant, and removed duplicates, resulting in 112 episodes for annotation.

Annotators worked through these episodes in batches of 30-40, focusing on
the rare strategies and refining their codebook to achieve the desired IRR. This
process allowed annotators to reach an agreement and acceptable IRR for tracing,
but not for starting over.

Two additional rounds of annotation were conducted to refine the codebook
for starting over. In the second round, the prompt was applied to 500 new
episodes, identifying 58 relevant episodes. We selected 116 episodes, including the
58 relevant episodes and 58 randomly selected from the remaining 442 episodes.
In the third round, the prompt was applied to 300 new episodes, identifying 41
relevant episodes. We selected 82 episodes, including the 41 relevant episodes and
41 randomly sampled from the remaining 259 non-relevant episodes. Acceptable
IRR was reached for starting over in this third round.

4 Results

4.1 RQ1: Focusing Attention on Relevant Examples

The LLM filtering method, using a hierarchical prompt structure aligned with
expert decision-making processes, improved the identification of episodes con-
taining rare strategies compared to the initial simpler prompt.
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Table 2. Debugging Strategies with Labels and Kappa Scores with Original Prompts
and New Prompts.

Original Strategy Label Kappa_original Kappa_new
Tracing Strategy A* 0.38 0.71
Starting over Strategy B* 0.14 0.15
Focusing on problem Strategy C 0.33 0.44
Fix multiple syntax errors Strategy D* 0.09 0.00
Syntax error tinkering Strategy E* 0.43 -0.01
Iterative changes Strategy F 0.32 0.71
Test error tinkering Strategy G* -0.02 0.14
No strategy Strategy N 0.13 0.40

For the tracing strategy, when applied to 453 human-annotated episodes,
the LLM filter correctly recalled 16/19 (84%) positive examples and excluded
420/434 (97%) irrelevant episodes. It selected 14/434 (3%) episodes as relevant
when human annotation indicated otherwise and excluded 3/19 (16%) human-
annotated tracing episodes.

For the starting over strategy, the LLM filter correctly recalled 20/21 (95%)
positive examples and excluded 309/432 (72%) irrelevant episodes. In addition,
it selected 123/432 (28%) episodes as relevant when human annotation indicated
otherwise and excluded 1/21 (5%) human-annotated starting over episodes.

When applied to a dataset of 500 newly selected episodes, the refined P2
prompts identified 51 episodes as relevant to the tracing strategy and 70 episodes
as relevant to the starting over strategy. This included 10 episodes identified
as relevant for both strategies. From these, we randomly selected half of the
episodes for each strategy (26 for tracing and 35 for starting over), which is to
ensure a balanced examination of episodes that are relevant to the rare strategies.
To maintain objectivity and reduce bias during annotation, an equal number of
episodes (61) randomly selected from the 388 not relevant episodes were added to
the set of episodes to be annotated by experts, and then eliminated the duplicates
from the overlaps. This resulted in 52 episodes for tracing, 70 for starting over,
and 10 overlapping episodes, totaling 112 episodes for annotation.

Human annotators identified 20 positive examples of tracing out of 52 episodes,
and 19 of starting over out of 70 episodes, observed in 38% and 27% of episodes,
respectively. This encounter rate was considerably higher than in randomly se-
lected episodes without LLM (4% for tracing and 5% for starting over). This
increased encounter rate of rare strategies when using an LLM filter allowed
experts to focus on relevant examples manifesting the strategies, enabling them
to better understand students’ debugging behaviors. This focused analysis facil-
itated the refinement of the coding scheme for these rare strategies.

4.2 RQ2: Refinement of Coding Schemes

The use of an LLM filtering approach allowed us to create samples in which the
occurrence of rare strategies was inflated. This increased occurrence rate allowed
for more in-depth discussions and analysis of the ways in which the strategies
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manifested in the data. For example, experts discovered that the starting over
strategy could manifest in various ways, such as changing the code structure
or changing the code style. These insights led to the refinement of the coding
schemes to better capture the nuances of the strategy.

Moreover, the inflated sampling also identified relevant negative examples –
episodes that were similar to those containing the target strategy but did not
meet the criteria. Discussing these borderline cases helped experts clarify the
boundaries of the strategy and refine the guidelines to minimize ambiguity. For
instance, experts encountered episodes where students changed a big chunk of
code by simplifying the code with the same logic, which prompted them to add
specific criteria to the guidelines to differentiate between starting over and not
starting over.

By focusing on both positive and relevant negative examples of rare strate-
gies, the inflated sampling facilitated a more comprehensive understanding of the
strategies and their variations. This understanding, in turn, enabled experts to
refine the guidelines and make them more precise, comprehensive, and reliable.
The refined guidelines not only improved the consistency of annotations but also
enhanced the overall validity of the codebook.

4.3 RQ3: Validation of Coding Schemes

Despite the belief of the human annotators that the tracing strategy should have
been relatively easy to identify in the data, they were not initially able to achieve
a satisfactory IRR. This may have been because, out of 453 annotated episodes,
only 19 contained positive examples of the tracing strategy and 21 contained
positive examples of the starting over strategy. This limited their ability to
define and validate their coding scheme. Validating coding schemes using IRR
measures such as Cohen’s Kappa requires annotators to code a sufficient number
of samples. In particular, such a sample should include enough positive examples
of the coded concepts. For this reason, validating annotations for rare debugging
strategies, such as tracing and starting over can require an important amount
of work. Using LLMs to filter and inflate the occurrence of rare strategies can
have an important impact on the validation process.

This can be illustrated through the use of Shaffer’s Rho [34, 11], a measure
that can be used to estimate the number of episodes that should be annotated to
achieve a desired IRR. Taking the tracing strategy as an example, this strategy
had an occurrence rate of 4% in the sample initially coded by human annota-
tors. According to Shaffer’s Rho, achieving a desired Cohen’s Kappa of 0.8 at a
significance level of 0.05 would require a validation set of at least 280 episodes
per validation attempt. In contrast, using the proposed LLM filtering approach
allowed us to inflate the occurrence rate for the tracing strategy to 46% (anno-
tators agreed on 21 tracing episodes out of a filtered set of 52). With this new
occurrence rate, Shaffer’s Rho indicated that 70 episodes would be sufficient to
achieve a similar value of Cohen’s Kappa, indicating an important reduction in
required annotation efforts. A similar reduction can be observed for the starting
over strategy where the use of LLM filtering increased the occurrence rate of
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this strategy from 5% to 27% (annotators agreed on 19 out of a filtered set of
70) and reduced the number of required episodes (according to Shaffer’s Rho)
from 240 to 100.

Using the LLM filtering approach, human annotators were able to achieve a
Cohen’s Kappa of 0.88 for the tracing strategy and of 0.58 for the starting over
strategy after labeling one additional set of 112 episodes with inflated sampling
for both of these rare strategies. Having achieved acceptable IRR for the tracing
strategy, further rounds of validation focused only on starting over. The next
validation included 116 episodes, for which human annotators achieved a Co-
hen’s Kappa of 0.73. Finally, a third round of validation was conducted using 82
episodes, for which a Kappa of 0.82 was achieved.

5 Discussions & Conclusions

The results of this study illustrate the potential of LLMs in assisting human an-
notators when defining and validating coding schemes for rare phenomena, such
as debugging strategies that are rarely used by students when solving problems
in an introductory computer science course. We proposed an LLM-based filtering
approach that was used to focus the attention of human annotators on exam-
ples relevant to two rare strategies tracing and starting over, by inflating their
occurrence rate in sets of randomly sampled episodes. This provided the anno-
tators with more examples that could be used to refine their coding schemes,
and validate these schemes more efficiently.

These findings align with recent literature that highlights the capabilities
of LLMs in assisting with data annotation tasks. As observed by [38], LLMs’
explanations of their coding decisions can help researchers validate and refine
human-generated codes by identifying inconsistencies and prompting researchers
to re-examine their rationales. Similarly, in this study, the LLM’s ability to
identify relevant examples facilitated more targeted discussions among experts,
enabling them to refine their codebook and improve the overall reliability of the
coding scheme.

Additionally, the LLM-based approach to inflate the occurrence rate of rare
strategies reduced the annotation effort required to validate the codebook. This
is consistent with the findings of [8], who reported a 50% to 63% reduction in
the size of annotation sets when using an LSTM neural network to assist with
the development of qualitative codes for text data using regular expressions. By
increasing the prevalence of rare strategies in the annotation set, the proposed
LLM filtering approach allowed annotators to achieve a reliable IRR with a
smaller sample size, saving time and effort in the manual annotation process.

However, this study also revealed limitations of the LLM approach. In partic-
ular, it relies on being able to write prompts describing the annotation process
in a way that the LLM can correctly interpret and that will filter out a large
number of irrelevant examples while retaining both relevant positive and neg-
ative examples of the desired phenomena. For instance, the LLM struggled to
understand the idea of “difference between submissions” in the codebook, which
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is crucial for identifying debugging strategies that manifest across multiple sub-
missions. Additionally, the LLM had difficulty distinguishing between printing
statements used for tracing and those required by the homework questions. These
limitations underscore the need for further refinement of the LLM prompts and
codebook to improve the accuracy of identifying and annotating these specific
debugging strategies.

Despite the promising results for the proposed approach, the designed LLM
prompt performed poorly on three rare debugging strategies (fix multiple syntax
errors, syntax error tinkering and test error tinkering) because the annotators
have not even encountered enough samples to develop the filtering prompts. As a
result, human annotators were not able to improve the coding schemes for these
strategies. Further refinement of the LLM prompts would be required before our
proposed method could be applied to these strategies. Future research should
explore ways to enhance the LLM’s understanding of complex coding patterns
and context-specific nuances to better capture these strategies.
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